Summary

双螺丝挤压工艺,以生产可再生纤维板

Published: January 27, 2021
doi:

Summary

开发了多功能双螺杆挤压工艺,为木质细胞生物量提供高效的恒温-机械化学预处理,从而提高了平均纤维纵横比。纤维精炼后还可以连续添加天然粘合剂,从而在热压获得挤压材料后,生物基纤维板具有改进的机械性能。

Abstract

开发了一种多用途的双螺杆挤压工艺,可在木质细胞分子生物质上提供高效的恒温-机械化学预处理,然后将其用作全生物基纤维板机械加固的来源。通过这一过程,各种木质细胞素作物副产品已经成功地进行了预处理,例如谷物稻草(特别是大米)、香菜稻草、从卵泡亚麻稻草中抽水,以及阿马兰和向日葵茎的树皮。

挤压过程导致平均纤维纵横比显著提高,从而提高了纤维板的机械性能。双螺杆挤出器也可以在桶的末端安装过滤模块。从木质细胞基质中连续提取各种化学物质(如无糖、血糖、精油馏分挥发物等),因此纤维精炼可以同时进行。

挤出机还可用于其混合能力:天然粘合剂(如有机木质素,蛋白油饼,淀粉等)可以添加到螺丝轮廓末端的精炼纤维中。获得的预混音可通过热压成型,天然粘合剂有助于纤维板的凝聚。这种组合工艺在单一的挤出机通过提高生产时间,生产成本,并可能导致工厂生产规模的减少。由于所有操作都是一步一步进行的,纤维形态保存得更好,这要归功于挤出器内材料的居住时间缩短,从而提高了材料性能。这种一步一步的挤出操作可能是宝贵的工业过程强化的起源。

与商用木基材料相比,这些完全基于生物的纤维板不会排放任何甲醛,它们可以找到各种应用,如中间容器、家具、家用地板、搁板、一般建筑等。

Introduction

挤压是一个过程,在此期间,流动的材料被迫通过热死。因此,挤出允许在压力下形成预热产品。第一台工业单螺杆挤出机出现于1873年。它用于制造金属连续电缆。从1930年起,单螺杆挤出适应食品工业生产香肠和过去。相反,第一台双螺杆挤出机已首次用于食品工业的发展。直到20世纪40年代,它才出现在合成聚合物领域。为此,设计了新的机器,其操作也建模了1。开发了一个具有共穿透和共旋转螺丝的系统,允许同时进行混合和挤压。此后,通过新型螺丝的设计,挤出技术不断发展。今天,食品行业广泛使用双螺杆挤压,虽然它比单螺杆挤出更昂贵,因为双螺杆挤出允许进入更精细的材料加工和最终产品。它特别用于淀粉制品的挤压烹饪,但也用于蛋白质的纹理和宠物食品和鱼饲料的制造。

最近,双螺杆挤压的应用领域已扩展到植物物质2、3的恒温-机械化学分馏。这一新概念已导致真正的反应堆的发展,能够改变或分馏工厂的问题,在一个单一的步骤,以单独生产提取物和通过液体/固体分离2,3,4的擦除。在农工化学实验室(LCA)进行的工作突出了双螺杆技术对农用资源2、3的分馏和价值化的多种可能性。其中一些例子是:1)植物油的机械压榨和/或”绿色”溶剂萃取5、6、7、8、9、10。2) 提取血细胞素11,12,13,蛋白质14,15,和多酚提取物16.3) 生产第二代生物乙醇的植物细胞壁的酶降解17。4) 生产含有蛋白质18或多糖19基质的生物复合物材料。5) 通过混合谷物和生物聚酯20,21生产热塑性材料。6) 通过混合热塑性聚合物(生物基与否)和植物填充剂22、23生产生物复合物。7) 用于生产纸浆13、24和纤维板25、26、27、28、29、30、31、32的木质细胞材料的去除。

双螺杆挤出器通常被认为是一个连续的热-机械化学(TMC)反应堆。事实上,它结合了一步化学,热,以及机械操作。化学一导致在桶的不同点注射液体试剂的可能性。由于桶的热调节,热电一个是可能的。最后,机械一个取决于沿螺钉轮廓的螺丝元件的选择。

为了去除木质细胞质材料来生产纤维板,最近的作品使用了稻草25、28、香菜稻草26、29、卵磷脂皮27以及向日葵30、32和阿马兰31树皮。木质细胞生物量目前对这种应用的兴趣(即机械加固)是由用于生产木本材料的森林资源经常枯竭所解释的。作物残留物价格低廉,可能广泛可用。此外,目前的木材颗粒与石油化工脂混合,可能有毒。往往占目前商业材料总成本的30%以上33,一些脂质有助于甲醛的排放,降低室内空气质量34。研究兴趣已转向使用天然粘合剂。

木质细胞生物量主要由纤维素和血细胞组成,形成异质复合物。血细胞素浸渍在木质层中,这些褐金素层在这些复合物周围形成一个三维网络。使用木质细胞生物量制造纤维板通常需要除颤预处理。为此,有必要分解保护纤维素和血糖的木质素。机械、热和化学35,甚至酶36,37,38预处理必须应用。这些步骤还增加了纤维的自粘性,即使最常添加外源粘合剂,也能促进无粘合板27的生产。

预处理的主要目的是改善微量纤维的颗粒大小。简单的研磨提供了减少纤维尺寸27,39,40的可能性。价格低廉,有助于增加纤维特异性表面。内细胞壁的组件变得更加容易接近,获得的面板的机械性能得到改善。当产生热力机械纸浆时,除颤效率显著提高,例如,通过消化加除颤41,从不同的制浆过程42或蒸汽爆炸43,44,45,46,47。最近,LCA开发了使用双螺杆挤压25,26,27,28,29,30,31,32的木质细胞纤维的原始预处理。TMC除颤后,挤出器还使纤维内自然粘合剂的均匀分散。由此产生的预混音准备被热压入纤维板。

在除颤稻草的过程中,将双螺杆挤压与消化加除颤过程25进行比较。挤出方法显示成本显著降低,即比制浆方法低九倍。此外,还观察到加水量减少(1.0最大液/固体比,而不是用制浆方法4.0分钟),并观察到精炼纤维的平均纵横比(21.2-22.6而不是16.3-17.9)的明显增加。这些纤维具有高度提高的机械增强能力。这表现在稻草为基础的纤维板,其中纯非恶化木质素(如Biolignin)用作活页夹(高达50 MPa弯曲强度和24%厚度膨胀后24小时浸入水中)28。

TMC对双螺杆挤出机的去除兴趣也已用香菜吸管26得到证实。精炼纤维的纵横比从 22.9-26.5 不等,而简单的地面纤维的纵横比仅为 4.5。100% 基于香菜的纤维板是通过在挤出精制吸管中加入一个蛋糕作为蛋白质粘合剂(质量为 40%)获得的。与单纯压碎的吸管制成的面板相比,它们的柔韧强度(高达 29 MPa),尤其是对水的抵抗力(厚度膨胀高达 24%)显著提高。此外,这些面板不排放甲醛,因此,它们比市场上经典发现的中密度纤维板(MDF)和刨花板29 更环保、更有利于人体健康。

同样,完全基于amaanth31 和向日葵32的面板,结合了树皮中的挤出精炼纤维作为强化和种子蛋糕作为蛋白质活页夹,成功生产。他们分别表现出35MPa和36MPa的柔韧性优势。然而,他们发现,他们的抗水性较低:71%和87%,分别为厚度膨胀。基于从渗出亚麻吸管中挤出精制垫片的自粘板也可获得27个。在这种情况下,是双螺杆 TMC 除颤过程中释放的连体分数有助于自我粘合。然而,获得的硬板显示较低的机械强度(只有12 MPa弹性强度),和非常高的厚度肿胀(127%)。

以上介绍的所有挤出纤维基面板都可以找到工业应用,因此是当前商业木基材料的可持续替代品。根据国际标准化组织(ISO)的要求,48、49、50,其具体应用将取决于其机械和水的灵敏度特性。

本文详细描述了在再生板中使用木质细胞纤维作为机械加固之前挤压和精炼木质细胞纤维的程序。提醒一下,与传统的制浆方法相比,这个过程减少了水的添加量,而且能耗也更低同一台双螺杆机也可用于在纤维中添加天然粘结剂。

更具体地说,提出了从卵泡亚麻(利努姆乌西塔西姆 L.)吸管进行双螺杆挤压精炼的详细大纲。这项研究中使用的稻草是商业获得的。它来自珠穆朗玛峰品种,植物于2018年在法国西南部种植。在同一挤出器通,一个塑料亚麻籽蛋糕(用作外源粘合剂)也可以添加到桶的中间,然后紧密地混合到精致的垫沿螺丝轮廓的后半部分。机器插座收集具有蓬松材料形式的同质混合物。TMC 的一步操作使用中试秤机进行。我们的目标是为操作员提供一个详细的程序,以便正确进行石块的挤压精炼,然后添加蛋糕。在此操作之后,获得预混音已准备好使用热压法后续生产 100% 基于乳胶的亚麻硬板。

Protocol

1. 准备原材料 使用渗水亚麻,这是机械提取”全纤维”提取装置51中稻草的巴斯特纤维的初步阶段的结果。使用振动筛去除可能仍包含的短纺织纤维。注意:由于去除这些短纺织纤维可能很困难,请根据需要多次重复此筛分操作。在这里,目标是改善重量喂料器漏斗中的卵泡亚麻的流动,因此,在引入双螺杆挤出器之前,便于其施用。 使用塑料亚麻籽蛋糕,通过?…

Representative Results

在使用配置(步骤 3.1.1)对含卵亚麻水进行纤维精炼时,故意以等于 1.0 的液体/固体比率添加水。根据先前的25、26、27年作品,这种液体/固体比率比较低的比率更能保持双螺杆挤出口精炼纤维的长度,同时有助于提高其平均纵横比。此外,添加的水量足够低,可以消除机器堵塞的任何风险。因此,在没有”免费”水(即会过量添…

Discussion

此处概述的协议描述了如何在将木质细胞纤维用作可再生板的机械加固之前处理其挤压精炼。在这里,使用的双螺杆挤出机是一台中试秤机。螺丝直径为 53 mm (D),配备 8 个模块,每个模块长度为 4D,但具有 8D 的模块 1 除外长度,相当于36D总长度(即1,908毫米)的桶。其长度足够长,适用于加工材料,在单次通过中继承几个基本操作,即喂食、压缩、纤维固体与添加的水之间的亲密混合、膨胀…

Divulgations

The authors have nothing to disclose.

Acknowledgements

没有

Materials

Analogue durometer Bareiss HP Shore Device used for determining the Shore D surface hardness of fiberboards
Ash furnace Nabetherm Controller B 180 Furnace used for the mineral content determinations
Belt dryer Clextral Evolum 600 Belt dryer used for the continuous drying of extrudates at the exit of the twin-screw extruder
Cold extraction unit FOSS FT 121 Fibertec Cold extractor used for determining the fiber content inside solid materials
Densitometer MA.TEC Densi-Tap IG/4 Device used for determining apparent and tapped densities of extrudates once dried
Double-helix mixer Electra MH 400 Mixer used for preparing the solid mixture made of the raw shives and the plasticized linseed cake for producing board number 12
Fiber morphology analyzer Techpap MorFi Compact Analyzer used for determining the morphological characteristics of extrusion-refined shives
Gravimetric belt feeder Coperion K-Tron SWB-300-N Feeder used for the quantification of the oleaginous flax shives
Gravimetric screw feeder Coperion K-Tron K-ML-KT20 Feeder used for the quantification of the plasticized linseed cake
Hammer mill Electra BC P Crusher used for the grinding of granules made of plasticized linseed cake
Heated hydraulic press Pinette Emidecau Industries PEI 400-t Hydraulic press used for molding the fiberboards through hot pressing
Hot extraction unit FOSS FT 122 Fibertec Hot extractor used for determining the water-soluble and fiber contents inside solid materials
Image analysis software National Institutes of Health ImageJ Software used for determining the morphological characteristics of raw shives
Oleaginous flax straw Ovalie Innovation N/A Raw material supplied for the experimental work
Piston pump Clextral DKM Super MD-PP-63 Pump used for the water quantification and injection
Scanner Toshiba e-Studio 257 Scanner used for taking an image of raw shives in gray level
Side feeder Clextral E36 Feeder used to force the introduction of the plasticized linseed cake inside the barrel (at the level of module 5) for configuration (b)
Thermogravimetric analyzer Shimadzu TGA-50 Analyzer used for conducting the thermogravimetric analysis of the solids being processed
Twin-screw extruder Clextral Evolum HT 53 Co-rotating and co-penetrating pilot scale twin-screw extruder having a 36D total length (D is the screw diameter, i.e., 53 mm)
Universal oven Memmert UN30 Oven used for the moisture content determinations
Universal testing machine Instron 33R4204 Testing machine used for determining the bending properties of fiberboards
Ventilated oven France Etuves XL2520 Oven used for the discontinuous drying of extrudates at the exit of the twin-screw extruder
Vibrating sieve shaker RITEC RITEC 600 Sieve shaker used for the sieving of the plasticized linseed cake
Vibrating sieve shaker RITEC RITEC 1800 Sieve shaker used for removing short bast fibers entrapped inside the oleaginous flax shives

References

  1. Martelli, F. G. . Twin-screw extruders: a basic understanding. , (1983).
  2. Evon, P., Vandenbossche, V., Candy, L., Pontalier, P. Y., Rouilly, A. Twin-screw extrusion: a key technology for the biorefinery. Biomass extrusion and reaction technologies: principles to practices and future potential. American Chemical Society, ACS Symposium Series. 1304 (2), 25-44 (2018).
  3. Vandenbossche, V., Candy, L., Evon, P. h., Rouilly, A., Pontalier, P. Y. Extrusion. Green Food Processing Techniques: Preservation, Transformation and Extraction. 10, 289-314 (2019).
  4. Bouvier, J. M., Campanella, O. H. The Generic Extrusion Process IV: Thermomechanical pretreatment and Solid-Liquid Separation. Extrusion Processing Technology: Food and Non-Food Biomaterials. , 351-392 (2014).
  5. Evon, P., Vandenbossche, V., Pontalier, P. Y., Rigal, L. Direct extraction of oil from sunflower seeds by twin-screw extruder according to an aqueous extraction process: feasibility study and influence of operating conditions. Industrial Crops and Products. 26 (3), 351-359 (2007).
  6. Evon, P., Vandenbossche, V., Pontalier, P. Y., Rigal, L. Aqueous extraction of residual oil from sunflower press cake using a twin-screw extruder: feasibility study. Industrial Crops and Products. 29 (2-3), 455-465 (2009).
  7. Evon, P., Amalia Kartika, I., Cerny, M., Rigal, L. Extraction of oil from jatropha seeds using a twin-screw extruder: Feasibility study. Industrial Crops and Products. 47, 33-42 (2013).
  8. Uitterhaegen, E., et al. Extraction of coriander oil using twin-screw extrusion: Feasibility study and potential press cake applications. Journal of the American Oil Chemists’ Society. 92 (8), 1219-1233 (2015).
  9. Evon, P., et al. The thermo-mechano-chemical twin-screw reactor, a new perspective for the biorefinery of sunflower whole plant: aqueous extraction of oil and other biopolymers, and production of biodegradable fiberboards from solid raffinate. Oilseeds & fats, Crops and Lipids. 23 (5), 505 (2016).
  10. Uitterhaegen, E., Evon, P. Twin-screw extrusion technology for vegetable oil extraction: a review. Journal of Food Engineering. 212, 190-200 (2017).
  11. N’Diaye, S., Rigal, L. Factors influencing the alkaline extraction of poplar hemicelluloses in a twin-screw reactor: correlation with specific mechanical energy and residence time distribution of the liquid phase. Bioresource Technology. 75 (1), 13-18 (2000).
  12. Prat, L., Guiraud, P., Rigal, L., Gourdon, C. A one dimensional model for the prediction of extraction yields in a two phases modified twin-screw extruder. Chemical Engineering and Processing: Process Intensification. 41 (9), 743-751 (2002).
  13. Maréchal, V., Rigal, L. Characterization of by-products of sunflower culture: commercial applications for stalks and heads. Industrial Crops and Products. 10 (3), 185-200 (1999).
  14. Colas, D., Doumeng, C., Pontalier, P. Y., Rigal, L. Twin-screw extrusion technology, an original solution for the extraction of proteins from alfalfa (Medicago sativa). Food and Bioproducts Processing. 91 (2), 175-182 (2013).
  15. Colas, D., Doumeng, C., Pontalier, P. Y., Rigal, L. Green crop fractionation by twin-screw extrusion: Influence of the screw profile on alfalfa (Medicago sativa) dehydration and protein extraction. Chemical Engineering and Processing: Process Intensification. 72, 1-9 (2013).
  16. Celhay, C., Mathieu, C., Candy, L., Vilarem, G., Rigal, L. Aqueous extraction of polyphenols and antiradicals from wood by-products by a twin-screw extractor: Feasibility study. Comptes Rendus Chimie. 17 (3), 204-211 (2014).
  17. Vandenbossche, V., et al. Suitability assessment of a continuous process combining thermo-mechano-chemical and bio-catalytic action in a single pilot-scale twin-screw extruder for six different biomass sources. Bioresource Technology. 211, 146-153 (2016).
  18. Rouilly, A., Orliac, O., Silvestre, F., Rigal, L. New natural injection-moldable composite material from sunflower oil cake. Bioresource Technology. 97 (4), 553-561 (2006).
  19. Peyrat, E., Rigal, L., Pluquet, V., Gaset, A. Vegetable material from cereal plants and process for making the same. European Patent. , (2000).
  20. Chabrat, &. #. 2. 0. 1. ;., Abdillahi, H., Rouilly, A., Rigal, L. Influence of citric acid and water on thermoplastic wheat flour/poly(lactic acid) blends. I: Thermal, mechanical and morphological properties. Industrial Crops and Products. 37 (1), 238-246 (2012).
  21. Abdillahi, H., Chabrat, &. #. 2. 0. 1. ;., Rouilly, A., Rigal, L. Influence of citric acid on thermoplastic wheat flour/poly(lactic acid) blends. II. Barrier properties and water vapor sorption isotherms. Industrial Crops and Products. 50, 104-111 (2013).
  22. Gamon, G., Evon, P. h., Rigal, L. Twin-screw extrusion impact on natural fibre morphology and material properties in poly(lactic acid) based biocomposites. Industrial Crops and Products. 46, 173-185 (2013).
  23. Uitterhaegen, E., et al. Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw. Composites Part A: Applied Science and Manufacturing. 113, 254-263 (2018).
  24. Manolas, C., Gaset, A., Jamet, J. P., Rigal, L., N’Diaye, S. Process for depithing pith containing plants, in particular sorghum. European Patent. , (1995).
  25. Theng, D., et al. Comparison between two different pretreatment technologies of rice straw fibers prior to fiberboard manufacturing: twin-screw extrusion and digestion plus defibration. Industrial Crops and Products. 107, 184-197 (2017).
  26. Uitterhaegen, E., et al. Impact of a thermomechanical fiber pre-treatment using twin-screw extrusion on the production and properties of renewable binderless coriander fiberboards. International Journal of Molecular Sciences. 18, 1539 (2017).
  27. Evon, P. h., et al. Production of fiberboards from shives collected after continuous fibre mechanical extraction from oleaginous flax. Journal of Natural Fibers. , (2018).
  28. Theng, D., et al. Production of fiberboards from rice straw thermo-mechanical extrudates using thermopressing: influence of fiber morphology, water addition and lignin content. European Journal of Wood and Wood Products. 77 (1), 15-32 (2019).
  29. Simon, V., et al. VOC and carbonyl compound emissions of a fiberboard resulting from a coriander biorefinery: comparison with two commercial wood-based building materials. Environmental Science and Pollution Research. 27, 16121-16133 (2020).
  30. Verdier, T., et al. Using glycerol esters to prevent microbial growth on sunflower-based insulation panels. Construction Materials. , (2020).
  31. Evon, P. h., et al. Low-density insulation blocks and hardboards from amaranth (Amaranthus cruentes) stems, a new perspective for building applications. 3rd Euromaghreb Conference: Sustainability and Bio-based Materials on the road of Bioeconomy. , (2020).
  32. Labonne, L., Samalens, F., Evon, P. h. Sunflower fiberboards: influence of molding conditions on bending properties and water uptake. 5th International Conference on Structural Analysis of Advanced Materials. , (2021).
  33. Van Dam, J. E. G., Van den Oever, M. J. A., Keijsers, E. R. P. Production process for high density high performance binderless boards from whole coconut husk. Industrial Crops and Products. 20 (1), 97-101 (2004).
  34. Salthammer, T., Mentese, S., Marutzky, R. Formaldehyde in the indoor environment. Chemical Reviews. 110 (4), 2536-2572 (2010).
  35. Zhang, D., Zhang, A., Xue, L. A review of preparation of binderless fiberboards and its self-bonding mechanism. Wood Science and Technology. 49, 661-679 (2015).
  36. Felby, C., Pedersen, L. S., Nielsen, B. R. Enhanced auto adhesion of wood fibers using phenol oxidases. Holzforschung. 51, 281-286 (1997).
  37. Felby, C., Hassingboe, J., Lund, M. Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme and Microbial Technology. 31 (6), 736-741 (2002).
  38. Felby, C., Thygesen, L. G., Sanadi, A., Barsberg, S. Native lignin for bonding of fiber boards: evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Industrial Crops and Products. 20 (2), 181-189 (2004).
  39. Okuda, N., Sato, M. Manufacture and mechanical properties of binderless boards from kenaf core. Journal of Wood Science. 50, 53-61 (2004).
  40. Velásquez, J. A., Ferrando, F., Salvadó, J. Binderless fiberboard from steam exploded miscanthus sinensis: The effect of a grinding process. Holz als Roh- und Werkstoff. 60, 297-302 (2002).
  41. Theng, D., et al. All-lignocellulosic fiberboard from corn biomass and cellulose nanofibers. Industrial Crops and Products. 76, 166-173 (2015).
  42. Migneault, S., et al. Medium-density fiberboard produced using pulp and paper sludge from different pulping processes. Wood and Fiber Science. 42 (3), 292-303 (2010).
  43. Velásquez, J. A., Ferrando, F., Farriol, X., Salvadó, J. Binderless fiberboard from steam exploded miscanthus sinensis. Wood Science and Technology. 37 (3), 269-278 (2003).
  44. Xu, J., Widyorini, R., Yamauchi, H., Kawai, S. Development of binderless fiberboard from kenaf core. Journal of Wood Science. 52 (3), 236-243 (2006).
  45. Quintana, G., Velásquez, J., Betancourt, S., Gañán, P. Binderless fiberboard from steam exploded banana bunch. Industrial Crops and Products. 29 (1), 60-66 (2009).
  46. Mancera, C., El Mansouri, N. E., Vilaseca, F., Ferrando, F., Salvado, J. The effect of lignin as a natural adhesive on the physico-mechanical properties of Vitis vinifera fiberboards. BioResources. 6 (3), 2851-2860 (2011).
  47. Mancera, C., El Mansouri, N. E., Pelach, M. A., Francesc, F., Salvadó, J. Feasibility of incorporating treated lignins in fiberboards made from agricultural waste. Waste Management. 32 (10), 1962-1967 (2012).
  48. ISO. ISO 16895-1:2008, Wood-based panels – Dry-process fibreboard – Part 1: Classifications. International Organization for Standardization. , (2008).
  49. ISO. ISO 16895-2:2010, Wood-based panels – Dry process fibreboard – Part 2: Requirements. International Organization for Standardization. , (2010).
  50. ISO. ISO 16893-2:2010, Wood-based panels – Particleboard – Part 2: Requirements. International Organization for Standardization. , (2010).
  51. Ouagne, P., Barthod-Malat, B., Evon, P. h., Labonne, L., Placet, V. Fibre extraction from oleaginous flax for technical textile applications: influence of pre-processing parameters on fibre extraction yield, size distribution and mechanical properties. Procedia Engineering. 200, 213-220 (2017).
  52. ISO. ISO 5983-1:2005, Animal Feeding Stuffs – Determination of nitrogen content and calculation of crude protein content – Part 1: Kjeldahl method. International Organization for Standardization. , (2005).
  53. AFNOR. NF EN 312 (2010-11), Particleboards – Specifications. Association Française de Normalisation. , (2010).
  54. ISO. ISO 665:2000, Oilseeds – Determination of moisture and volatile matter content. International Organization for Standardization. , (2000).
  55. ISO. ISO 749:1977, Oilseed residues – Determination of total ash. International Organization for Standardization. , (1977).
  56. Van Soest, P. J., Wine, R. H. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell wall constituents. Journal of AOAC International. 50 (1), 50-55 (1967).
  57. Van Soest, P. J., Wine, R. H. Determination of lignin and cellulose in acid detergent fiber with permanganate. Journal of AOAC International. 51 (4), 780-785 (1968).
  58. ISO. ISO 16978:2003, Wood-based panels – Determination of modulus of elasticity in bending and of bending strength. International Organization for Standardization. , (2003).
  59. ISO. ISO 868:2003, Plastics and ebonite – Determination of indentation hardness by means of a durometer (Shore hardness). International Organization for Standardization. , (2003).
  60. ISO. ISO 16260:2016, Paper and board – Determination of internal bond strength. International Organization for Standardization. , (2016).
  61. ISO. ISO 16983:2003, Wood-based panels – Determination of swelling in thickness after immersion in water. International Organization for Standardization. , (2003).
check_url/fr/62072?article_type=t

Play Video

Citer Cet Article
Evon, P., Labonne, L., Khan, S. U., Ouagne, P., Pontalier, P., Rouilly, A. Twin-Screw Extrusion Process to Produce Renewable Fiberboards. J. Vis. Exp. (167), e62072, doi:10.3791/62072 (2021).

View Video