Summary

实时动态导航系统,用于在严重萎缩性上颌骨患者中精确放置四颧植入物

Published: October 18, 2021
doi:

Summary

在这里,我们提出了一种协议,使用实时动态导航系统在严重萎缩性上颌骨患者中实现精确的四颧植入物放置。

Abstract

颧骨植入物(ZIs)是解决严重萎缩性无牙颌和上颌骨缺陷病例的理想方法,因为它们取代了广泛的骨增量并缩短了治疗周期。然而,放置ZI存在相关风险,例如穿透眶腔或颞下窝。此外,多个ZI的放置使这种手术有风险并且更难以执行。潜在的术中并发症非常危险,并可能导致无法弥补的损失。在这里,我们描述了一种实用,可行且可重复的实时手术导航系统方案,用于将四颧植入物精确放置在残余骨患者的严重萎缩上颌骨中,不符合常规植入物的要求。根据该协议,我们部门已有数百名患者接受了 ZI。临床结局令人满意,术中和术后并发症较低,输注设计图像和术后三维图像所指示的准确性较高。在整个手术过程中应使用此方法,以确保ZI放置安全。

Introduction

在 1990 年代,Branemark 引入了一种替代骨移植技术,即颧骨植入物 (ZI),也称为颧骨固定装置1。它最初用于治疗创伤受害者和上颌骨结构有缺陷的肿瘤切除患者。上颌骨切除术后,许多患者仅在颧骨体或颧骨的额叶延伸处保留锚定1,23

最近,ZI技术已广泛用于上颌骨严重再吸收的无牙颌和齿状患者。ZI植入物的主要适应症是萎缩性上颌骨。对于具有丰富临床经验的外科医生来说,在即时负荷系统(固定修复学)中使用四个ZI是实用的,并且它似乎是骨移植技术的绝佳替代方法24。然而,徒手或使用手术模板进行指导放置 ZI 时存在风险。风险包括肺泡内放置不准确、眶腔或颞下窝穿透以及颧突内放置不当5.多个ZI的放置使这种手术有风险且难以进行。因此,提高ZI放置的精度对其临床使用和安全性至关重要。

实时手术导航系统提供了一种不同的方法。它通过分析术前和术中计算机断层扫描图像提供实时和完全可视化的轨迹。借助实时导航系统,通过复杂的手术和治疗提高了精度和安全性56。使用实时手术导航系统开发了一种实用、可行且可重复的方案,以精确地将 ZI 放置在严重萎缩的上颌骨578910 中。通过该方案,我们已经治疗了数百名患者,临床结果令人满意5,678910在这里,我们提供了有关治疗程序的详细信息的协议。

Protocol

所有临床方案均由上海交通大学医学院附属第九人民医院医学伦理审查委员会批准(SH9H-2020-T29-3)。 1. 患者选择 患者纳入标准如下(表1)。确保患者呈现完全无牙颌或部分无牙颌,牙齿很少松动(图 1A-G)。 确保患者上颌骨严重萎缩,骨体积不足,无法在前上颌骨和/或后上颌骨进行常规种植…

Representative Results

入组患者是一名60岁的女性,没有任何系统性疾病(图1A-D,F)。CBCT扫描后,上颌前部的牙槽嵴小于2.9 mm,而上颌后区的残余骨高度小于2.4 mm(图1E,G和表1)。颧骨的宽度和厚度分别约为22.4-23.6毫米和6.1-8.0毫米(图2,表3)。根据颧骨解剖引导方法,前ZI的入口位于?…

Discussion

使用移植物对萎缩性上颌骨进行重建是困难的,因为它需要良好的手术技术,覆盖移植物上的高质量软组织,大量的患者合作以及有利于顶端修复的患者1718。在上颌萎缩患者中放置用于重建的牙科植入物是一项重大的临床挑战。面部骨吸收的模式与年龄有关,在无牙颌上颌中尤其明显,在使用完全可拆卸假体的患者中尤其明显19

Divulgations

The authors have nothing to disclose.

Acknowledgements

笔者感谢范胜驰博士提供的宝贵导航技术支持。本病例报告由国家科技部重点项目(2017YFB1302904)、上海市自然科学基金(No. 21ZR1437700)、上海交通大学临床研究计划(SHDC2020CR3049B)和上海交通大学工学与医学联合项目(YG2021QN72)资助。

Materials

Bistoury scalpel Hufriedy Group 10-130-05
Branemark system zygoma TiUnite RP 35mm Nobel Biocare AB 34724 TiUnite implant with overlength to place from the maxilla to the zygoma
Branemark system zygoma TiUnite RP 40mm Nobel Biocare AB 34735 TiUnite implant with overlength to place from the maxilla to the zygoma
Branemark system zygoma TiUnite RP 42.5mm Nobel Biocare AB 34736 TiUnite implant with overlength to place from the maxilla to the zygoma
Branemark system zygoma TiUnite RP 45mm Nobel Biocare AB 34737 TiUnite implant with overlength to place from the maxilla to the zygoma
Branemark system zygoma TiUnite RP 47.5mm Nobel Biocare AB 34738 TiUnite implant with overlength to place from the maxilla to the zygoma
Branemark system zygoma TiUnite RP 50mm Nobel Biocare AB 34739 TiUnite implant with overlength to place from the maxilla to the zygoma
Branemark system zygoma TiUnite RP 52.5mm Nobel Biocare AB 34740 TiUnite implant with overlength to place from the maxilla to the zygoma
CBCT Planmeca Oy,Helsinki, Finland Pro Max 3D Max
connection to handpiece Nobel Biocare AB 29081 the accessories to connect the intrument
Drill guard Nobel Biocare AB 29162 the accessories to protect the lips and soft tissue during the surgery
Drill guard short Nobel Biocare AB 29162 the accessories to protect the lips and soft tissue during the surgery
Handpiece zygoma 20:1 Nobel Biocare AB 32615 the basic instrument for implant drill
Instrument adapter array size L BRAINLAB AG 41801
Instrument adapter array size M BRAINLAB AG 41798
Instrument calibration matrix BRAINLAB AG 41874 a special tool for drill to calibration
I-plan automatic image fusion software STL data import/export for I-plan VectorVision2®, (I-plan CMF software) BRAINLAB AG inapplicability the software for navigation surgery planning
Multi-unit abutment 3mm Nobel Biocare AB 32330 the connection accessory between the implant and the titanium base
Multi-unit abutment 5mm Nobel Biocare AB 32331 the connection accessory between the implant and the titanium base
Periosteal elevator Hufriedy Group PPR3/9A the instrument for open flap surgery
Pilot drill Nobel Biocare AB 32630 the drill for the surgery
Pilot drill short Nobel Biocare AB 32632 the drill for the surgery measuring the depth of the implant holes
Pointer with blunt tip for cranial/ENT BRAINLAB AG 53106
Reference headband star BRAINLAB AG 41877
Round bur Nobel Biocare AB DIA 578-0 the drill for the surgery
Screwdriver manual Nobel Biocare AB 29149
Skull reference array BRAINLAB AG 52122 a special made metal reference for navigation camera to receive the signal
Skull reference base BRAINLAB AG 52129
Suture vicryl 4-0 Johnson &Johnson, Ethicon VCP310H
Temporary copping multi-unit titanium (with prosthetic screw) Nobel Biocare AB 29046 the temporary titanium base to fix the teeth
Titanium mini-screw CIBEI MB105-2.0*9 the mini-screw for navigation registration
Twist drill Nobel Biocare AB 32628 the drill for the surgery
Twist drill short Nobel Biocare AB 32629 the drill for the surgery
Zygoma depth indicator angled Nobel Biocare AB 29162
Zygoma depth indicator straight Nobel Biocare AB 29162 the measurement scale for
Zygoma handle Nobel Biocare AB 29162 the instrument for zygomatic implant placement

References

  1. Francischone, C. L., Vasconcelos, L. W., Filho, H. N., Francischone, C. E., Sartori, I. M. Chapter 15. The zygoma fixture. The osseointegration book. From calvarium to calcaneus. , 317-320 (2005).
  2. Weischer, T., Schettler, D., Mohr, C. Titanium implants in the zygoma as retaining elements after hemimaxillectomy. The International Journal of Oral & Maxillofacial Implants. 12 (2), 211-214 (1997).
  3. Jensen, O. T., Brownd, C., Blacker, J. Nasofacial prostheses supported by osseointegrated implants. The International Journal of Oral & Maxillofacial Implants. 7 (2), 203-211 (1992).
  4. Duarte, L. R., Filho, H. N., Francischone, C. E., Peredo, L. G., Branemark, P. I. The establishment of a protocol for the total rehabilitation of atrophic maxillae employing four zygomatic fixtures in an immediate loading system–a 30-month clinical and radiographic follow-up. Clinical Implant Dentistry and Related Research. 9 (4), 186-196 (2007).
  5. Hung, K. F., et al. Accuracy of a real-time surgical navigation system for the placement of quad zygomatic implants in the severe atrophic maxilla: A pilot clinical study. Clinical Implant Dentistry and Related Research. 19 (3), 458-465 (2017).
  6. Wu, Y., Wang, F., Huang, W., Fan, S. Real-time navigation in zygomatic implant placement: Workflow. Oral and Maxillofacial Surgery Clinics of North America. 31 (3), 357-367 (2019).
  7. Wang, F., et al. Reliability of four zygomatic implant-supported prostheses for the rehabilitation of the atrophic maxilla: a systematic review. The International Journal of Oral & Maxillofacial Implants. 30 (2), 293-298 (2015).
  8. Xiaojun, C., et al. An integrated surgical planning and virtual training system. IEEE 2010 International Conference on Audio, Language and Image Processing (ICALIP). , 1257-1261 (2010).
  9. Fan, S., et al. The effect of the configurations of fiducial markers on accuracy of surgical navigation in zygomatic implant placement: An in vitro study. The International Journal of Oral & Maxillofacial Implants. 34 (1), 85-90 (2019).
  10. Xiaojun, C., Ming, Y., Yanping, L., Yiqun, W., Chengtao, W. Image guided oral implantology and its application in the placement of zygoma implants. Computer Methods and Programs in Biomedicine. 93 (2), 162-173 (2009).
  11. Cawood, J. I., Howell, R. A. A classification of the edentulous jaws. The International Journal of Oral & Maxillofacial Surgery. 17 (4), 232-236 (1988).
  12. Davo, R., Pons, O., Rojas, J., Carpio, E. Immediate function of four zygomatic implants: a 1-year report of a prospective study. European Journal of Oral Implantology. 3 (4), 323-334 (2010).
  13. Jensen, O. T. Complete arch site classification for all-on-4 immediate function. The Journal of Prosthetic Dentistry. 112 (4), 741-751 (2014).
  14. Triplett, R. G., Schow, S. R., Laskin, D. M. Oral and maxillofacial surgery advances in implant dentistry. The International Journal of Oral & Maxillofacial Implants. 15 (1), 47-55 (2000).
  15. Aparicio, C. A proposed classification for zygomatic implant patient based on the zygoma anatomy guided approach (ZAGA): a cross-sectional survey. European Journal of Oral Implantology. 4 (3), 269-275 (2011).
  16. Hung, K. F., et al. Measurement of the zygomatic region for the optimal placement of quad zygomatic implants. Clinical Implant Dentistry and Related Research. 19 (5), 841-848 (2017).
  17. Kahnberg, K. E., Nystrom, E., Bartholdsson, L. Combined use of bone grafts and Br fixtures in the treatment of severely resorbed maxillae. The International Journal of Oral & Maxillofacial Implants. 4 (4), 297-304 (1989).
  18. Nystrom, E., Kahnberg, K. E., Gunne, J. Bone grafts and Br implants in the treatment of the severely resorbed maxilla: A 2-year longitudinal study. The International Journal of Oral & Maxillofacial Implants. 8 (1), 45-53 (1993).
  19. Jensen, S. S., Terheyden, H. Bone augmentation procedures in localized defects in the alveolar ridge: Clinical results with different bone grafts and bone-substitute materials. The International Journal of Oral & Maxillofacial Implants. 24, 218-236 (2009).
  20. Bedrossian, E. Rehabilitation of the edentulous maxilla with the zygoma concept: A 7-year prospective study. The International Journal of Oral & Maxillofacial Implants. 25 (6), 1213-1221 (2010).
  21. Dhamankar, D., Gupta, A. R., Mahadevan, J. Immediate implant loading: A case report. Journal of Indian Prosthodontic Society. 10 (1), 64-66 (2010).
  22. Aparicio, C., et al. Zygomatic implants: indications, techniques and outcomes, and the zygomatic success code. Periodontol 2000. 66 (1), 41-58 (2014).
  23. Chrcanovic, B. R., Abreu, M. H. Survival and complications of zygomatic implants: A systematic review. Journal of Oral and Maxillofacial Surgery. 17 (2), 81-93 (2013).
  24. Brånemark, P. I., et al. Zygoma fixture in the management of advanced atrophy of the maxilla: Technique and long-term results. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery. 38 (2), 70-85 (2004).
  25. Balshi, T. J., Wolfinger, G. J., Petropoulos, V. C. Quadruple zygomatic implant support for retreatment of resorbed iliac crest bone graft transplant. Implant Dentistry. 12 (1), 47-53 (2003).
  26. Chrcanovic, B. R., Oliveira, D. R., Custódio, A. L. Accuracy evaluation of computed tomography-derived stereolithographic surgical guides in zygomatic implant placement in human cadavers. The Journal of Oral Implantology. 36 (5), 345-355 (2010).
  27. Gellrich, N. C., et al. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast and Reconstructive Surgery. 110 (6), 1417-1429 (2002).
  28. Watzinger, F., et al. Placement of endosteal implants in the zygoma after maxillectomy: A Cadaver study using surgical navigation. Plast and Reconstructive Surgery. 107 (3), 659-667 (2001).
  29. Wagner, A., et al. Computer-aided placement of endosseous oral implants in patients after ablative tumour surgery: Assessment of accuracy. Clinical Oral Implants Research. 14 (3), 340-348 (2003).
  30. Casap, N., Wexler, A., Tarazi, E. Application of a surgical navigation system for implant surgery in a deficient alveolar ridge postexcision of an odontogenic myxoma. The Journal of Oral & Maxillofacial Surgery. 63 (7), 982-988 (2005).
  31. Pellegrino, G., Tarsitano, A., Basile, F., Pizzigallo, A., Marchetti, C. Computer-aided rehabilitation of maxillary oncological defects using zygomatic implants: A defect-based classification. The Journal of Oral & Maxillofacial Surgery. 73 (12), 1-11 (2015).
  32. Fan, S., et al. The effect of the configurations of fiducial markers on accuracy of surgical navigation in zygomatic implant placement: An in vitro study. The International Journal of Oral & Maxillofacial Implants. 34 (1), 85-90 (2019).
  33. D’Haese, J., Van De Velde, T., Elaut, L., De Bruyn, H. A prospective study on the accuracy of mucosally supported stereolithographic surgical guides in fully edentulous maxillae. Clinical Implant Dentistry and Related Research. 14 (2), 293-303 (2012).
  34. Stübinger, S., Buitrago-Tellez, C., Cantelmi, G. Deviations between placed and planned implant positions: an accuracy pilot study of skeletally supported stereolithographic surgical templates. Clinical Implant Dentistry and Related Research. 16 (4), 540-551 (2014).
check_url/fr/62489?article_type=t

Play Video

Citer Cet Article
Shen, Y., Dai, Q., Tao, B., Huang, W., Wang, F., Lan, K., Sun, Y., Ling, X., Yan, L., Wang, Y., Wu, Y. Real-Time Dynamic Navigation System for the Precise Quad-Zygomatic Implant Placement in a Patient with a Severely Atrophic Maxilla. J. Vis. Exp. (176), e62489, doi:10.3791/62489 (2021).

View Video