Summary

建立人肺类器官和近端分化以产生成熟的气道类器官

Published: March 23, 2022
doi:

Summary

该协议提出了一种从原代肺组织衍生人肺类器官的方法,扩大肺类器官并诱导近端分化以产生3D和2D气道类器官,从而忠实地对人气道上皮进行表型检查。

Abstract

缺乏强大的人体呼吸 道上皮体外 模型阻碍了对呼吸系统生物学和病理学的理解。我们描述了一种明确的方案,从肺组织中的成体干细胞中提取人肺类器官,并诱导近端分化以产生成熟的气道类器官。然后以高稳定性连续扩张肺类器官超过1年,而分化的气道类器官用于在形态学和功能上模拟人气道上皮至接近生理水平。因此,我们建立了人类气道上皮的鲁棒类器官模型。肺类器官和分化气道类器官的长期扩张产生了稳定和可再生的来源,使科学家能够在培养皿中重建和扩增人气道上皮细胞。人肺类器官系统为各种应用提供了独特且具有生理活性 的体外 模型,包括研究病毒 – 宿主相互作用,药物测试和疾病建模。

Introduction

类器官已成为器官发育 体外 建模和研究生物学和疾病的强大而通用的工具。当在生长因子定义的培养基中培养时,来自各种器官的成体干细胞(ASC)可以在3维(3D)中扩增并自组装成由多种细胞类型组成的器官样细胞簇,称为类器官。Clevers的实验室在2009年报告了第一个ASC衍生的类器官,人类肠道类器官的衍生12。之后,ASC衍生的类器官已被确定用于各种人体器官和组织,包括前列腺34,肝脏56,胃789,胰腺10,乳腺11和肺 1213.这些ASC衍生的类器官保留了天然器官的关键细胞,结构和功能特性,并在长期扩增培养物中保持了遗传和表型稳定性1415

类器官也可以来源于多能干细胞(PSC),包括胚胎干(ES)细胞和诱导多能干细胞(iPS)细胞16。虽然PSC衍生的类器官利用器官发育的机制来建立它们,但ASC可以通过重建在生理组织自我更新或组织修复期间模仿干细胞位的条件来强制形成类器官。PSC衍生的类器官是探索发育和器官发生的有利模型,尽管无法达到ASC衍生类器官的可比成熟水平。PSC衍生类器官的胎儿样成熟状态,以及建立这些类器官的复杂性,大大阻碍了它们在研究成熟组织中的生物学和病理学的广泛应用。

从鼻子到末端细支气管的人体呼吸道内衬气道上皮,也称为假分层纤毛上皮,由四种主要细胞类型组成,即纤毛细胞,杯状细胞,基底细胞和俱乐部细胞。我们与Clevers的实验室1213合作,从人类肺组织中建立了ASC衍生的人类肺类器官。这些肺类器官在扩张介质中连续扩张超过一年;确切的持续时间因从不同供体获得的不同类器官系而异。然而,与天然气道上皮相比,这些长期可扩张的肺类器官还不够成熟,因为纤毛细胞(人体气道中的主要细胞群)在这些肺类器官中代表性不足。因此,我们开发了一种近端分化方案,并产生了3D和2D气道类器官,其形态学和功能上将气道上皮进行表观镜检查至接近生理水平。

在这里,我们提供一种视频方案,从原代肺组织中衍生出人肺类器官,扩大肺类器官并诱导近端分化以产生3D和2D气道类器官。

Protocol

本文所述的所有使用人体组织的实验均已获得香港大学/医院管理局香港西区(UW13-364和UW21-695)机构审查委员会的批准。在组织收集之前获得患者的知情同意。 1. 人肺类器官的衍生 实验材料的制备 通过用2mM谷氨酰胺,10mM HEPES,100 U / mL青霉素和100μg / mL链霉素补充高级DMEM / F12培养基来制备基础培养基。 通过用10%R-spondin 1条件培养基,10%诺金?…

Representative Results

该方案能够以高成功率衍生出人肺类器官。将新鲜的人体肺组织切成小块,然后用胶原酶分解。将所得的单细胞嵌入基底基质中,并在肺类器官扩增培养基中孵育,并补充一系列用于上皮干细胞生长的利基因子(步骤1.1.2)。 图1 显示了嵌入在2型(BME; 图 1A(左)。囊性类器官出现并随着时间的推移而扩大(图1A,右)。同时,不…

Discussion

人气道内衬气道上皮,也称为假分层纤毛上皮。上气道上皮的主要细胞类型是纤毛细胞,其能够协调其顶端纤毛运动以从气道中排出粘液和吸入颗粒,产生和分泌粘液的杯状细胞以及排列在基底膜上并参与再生的基础细胞。在小气道(如细支气管)中,长方体气道上皮包含分泌性俱乐部细胞和比上气道区域更少的纤毛细胞。我们描述了一种从人类肺组织中的上皮干细胞中提取人体肺类器官的强大?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢香港大学李嘉诚医学院泛有机科学与电子显微镜中心在共聚焦成像和流式细胞术方面的协助。这项工作部分得到了食物及卫生局卫生及医学研究基金(HMRF,17161272及19180392)的资助;研究资助局一般研究基金(GRF,17105420);及香港特别行政区政府创新科技署Health@InnoHK。

Materials

Reagents for lung organoid culture
Advanced DMEM/F12 Invitrogen 12634010
A8301 Tocris 2939 500nM
B27 supplement Invitrogen 17504-044 1x
Cultrex Reduced Growth Factor Basement Membrane Matrix, Type 2 (BME 2) Trevigen 3533-010-0 70-80%
FGF-10 Peprotech 100-26 20 ng/mL
FGF-7 Peprotech 100-19 5 ng/mL
GlutaMAX (glutamine) Invitrogen 35050061 1x
HEPES 1M Invitrogen 15630-056 10 mM
Heregulin β-1 Peprotech 100-03 5 nM
N-Acetylcysteine Sigma-Aldrich A9165 1.25 mM
Nicotinamide Sigma-Aldrich N0636 10 mM
Noggin (conditional medium) home made 10x
Penicillin-Streptomycin (10,000 U/mL) Invitrogen 15140-122 1x
Primocin Invivogen ant-pm-1 100 µg/mL
Rspondin1 (conditional medium) home made 10x
SB202190 Sigma-Aldrich S7067 1 µM
Y-27632 Tocris 1254 5 µM
Proximal differentiation medium
DAPT Tocris 2634 10 µM
Heparin Solution StemCell Technology 7980 4 µg/mL
Hydrocortisone Stock Solution StemCell Technology 7925 1 µM
PneumaCult-ALI 10X Supplement air liquid interface supplement
PneumaCult-ALI Basal Medium StemCell Technology 05001 air liquid interface basal medium
PneumaCult-ALI Maintenance Supplement air liquid interface maintenance supplement
Y-27632 Tocris 1254 10 µM
Equipment
Biological safety cabinet Baker 1-800-992-2537
Carl Zeiss LSM 780 or 800 Zeiss confocal microscope
CO2 Incubator Thermo Fisher Scientific 42093483
Stereo-microscope Olympus Corporation CKX31SF
Centrifuge Eppendorf 5418BG040397
Serological pipettor Eppendorf
Micropipette Eppendorf
ZEN black or ZEN blue software Zeiss analysis software
Consumables
12mm Trans-well StemCell Technology #38023
12-well cell culture plate Cellstar 665970
15- and 50 ml conical tubes Thermo Fisher Scientific L6BF5Z8118
24-well cell culture plate Cellstar 662160
6.5mm Trans-well StemCell Technology #38024
Medical Syringe Filter Unit, 0.22 µm Sigma-Aldrich SLGPR33RB
Microfuge tubes Eppendorf
Micropipette tips Thermo Fisher Scientific TFLR140-200-Q21190531
Pasteur pipette glass Thermo Fisher Scientific 22-378893
Serological pipettes(5ml, 10ml, 25ml) Thermo Fisher Scientific BA08003, 08004, 08005
Antibodies
Goat Anti-Mouse Alexa Fluor 594 Invitrogen A11005
Goat Anti-Mouse, Alexa Fluor 488 Invitrogen A11001
Goat Anti-Rabbit Alexa Fluor 488 Invitrogen A11034
Goat Anti-Rabbit Alexa Fluor 594 Invitrogen A11037
Goat Anti-Rat Alexa Fluor 594 Invitrogen A11007
Mouse Anti-Cytokeratin 5 Abcam ab128190
Mouse Anti-FOX J1 Invitrogen 14-9965-82
Mouse Anti-Mucin 5AC Abcam ab3649
Mouse Anti-β-tubulin 4 Sigma T7941
Rabbit Anti-p63 Abcam ab124762
Rat Anti-Uteroglobin/CC-10 R&D Systems MAB4218-SP
Other reagent
TrypLE Select Enzyme (10X) Thermo Fisher Scientific A1217701 dissociation enzyme

References

  1. Sato, T., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 141 (5), 1762-1772 (2011).
  2. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  3. Karthaus, W. R., et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 159 (1), 163-175 (2014).
  4. Chua, C. W., et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nature Cell Biology. 16 (10), 951-954 (2014).
  5. Hu, H., et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell. 175 (6), 1591-1606 (2018).
  6. Huch, M., et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 494 (7436), 247-250 (2013).
  7. Schlaermann, P., et al. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut. 65 (2), 202-213 (2016).
  8. Bartfeld, S., et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 148 (1), 126-136 (2015).
  9. Wroblewski, L. E., et al. Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut. 64 (5), 720-730 (2015).
  10. Huch, M., et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. The EMBO Journal. 32 (20), 2708-2721 (2013).
  11. Sachs, N., et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 172 (1-2), 373-386 (2018).
  12. Sachs, N., et al. Long-term expanding human airway organoids for disease modeling. The EMBO Journal. 38 (4), 100300 (2019).
  13. Zhou, J., et al. Differentiated human airway organoids to assess infectivity of emerging influenza virus. Proceedings of the National Academy of Sciences of the United States of America. 115 (26), 6822-6827 (2018).
  14. Clevers, H. Modeling development and disease with organoids. Cell. 165 (7), 1586-1597 (2016).
  15. Fatehullah, A., Tan, S. H., Barker, N. Organoids as an in vitro model of human development and disease. Nature Cell Biology. 18 (3), 246-254 (2016).
  16. Lancaster, M. A., Huch, M. Disease modelling in human organoids. Disease Model Mechanisms. 12 (7), (2019).
  17. . Millicell ERS-2 User Guide Available from: https://www.merckmillipore.com/HK/en/life-science-research/cell-culture-systems/cell-analysis/millicell-ers-2-voltohmmeter/FiSb.qB.LDgAAAFBdMhb3.r5 (2021)
  18. Dye, B. R., et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife. 4, 05098 (2015).
  19. Dye, B. R., Miller, A. J., Spence, J. R. How to grow a lung: Applying principles of developmental biology to generate lung lineages from human pluripotent stem cells. Current Pathobiology Reports. 4, 47-57 (2016).
  20. Glinka, A., et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/beta-catenin and Wnt/PCP signalling. EMBO Reports. 12 (10), 1055-1061 (2011).
  21. Groppe, J., et al. Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature. 420 (6916), 636-642 (2002).
  22. Tadokoro, T., Gao, X., Hong, C. C., Hotten, D., Hogan, B. L. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development. 143 (5), 764-773 (2016).
  23. Mou, H., et al. Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell. 19 (2), 217-231 (2016).
  24. Balasooriya, G. I., Goschorska, M., Piddini, E., Rawlins, E. L. FGFR2 is required for airway basal cell self-renewal and terminal differentiation. Development. 144 (9), 1600-1606 (2017).
  25. Bar-Ephraim, Y. E., Kretzschmar, K., Clevers, H. Organoids in immunological research. Nature Reviews. Immunology. 20 (5), 279-293 (2019).
  26. Drost, J., Clevers, H. Translational applications of adult stem cell-derived organoids. Development. 144 (6), 968-975 (2017).
  27. Dutta, D., Heo, I., Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends in Molecular Medicine. 23 (5), 393-410 (2017).
  28. Zhou, J., et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nature Medicine. 26 (7), 1077-1083 (2020).
  29. Salahudeen, A. A., et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature. 588 (7839), 670-675 (2020).
  30. Han, Y., et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature. 589 (7841), 270-275 (2020).
  31. Mykytyn, A. Z., et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. eLife. 10, 64508 (2021).
  32. Jacob, F., et al. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell. 27 (6), 937-950 (2020).
  33. Lamers, M. M., et al. SARS-CoV-2 productively infects human gut enterocytes. Science. 369 (6499), 50-54 (2020).
  34. Mallapaty, S. The mini lungs and other organoids helping to beat COVID. Nature. 593 (7860), 492-494 (2021).

Play Video

Citer Cet Article
Li, C., Chiu, M. C., Yu, Y., Liu, X., Xiao, D., Huang, J., Wan, Z., Zhou, J. Establishing Human Lung Organoids and Proximal Differentiation to Generate Mature Airway Organoids. J. Vis. Exp. (181), e63684, doi:10.3791/63684 (2022).

View Video