Summary

A Mouse Model of Pulmonary Fibrosis Induced by Nasal Bleomycin Nebulization

Published: January 20, 2023
doi:

Summary

Various animal models of pulmonary fibrosis have been established using bleomycin to clarify the pathogenesis of pulmonary fibrosis and find new drug targets. However, most pulmonary fibrosis models targeting lung tissue have uneven drug administration. Here, we propose a model of uniform pulmonary fibrosis induced by nasal bleomycin nebulization.

Abstract

Pulmonary fibrosis is characteristic of several human lung diseases that arise from various causes. Given that treatment options are fairly limited, mouse models continue to be an important tool for developing new anti-fibrotic strategies. In this study, intrapulmonary administration of bleomycin (BLM) is carried out by nasal nebulization to create a mouse model of pulmonary fibrosis that closely mimics clinical disease characteristics. C57BL/6 mice received BLM (7 U/mL, 30 min/day) by nasal nebulization for 3 consecutive days and were sacrificed on day 9, 16, or 23 to observe inflammatory and fibrotic changes in lung tissue. Nasal aerosolized BLM directly targeted the lungs, resulting in widespread and uniform lung inflammation and fibrosis. Thus, we successfully generated an experimental mouse model of typical human pulmonary fibrosis. This method could easily be used to study the effects of the administration of various nasal aerosols on lung pathophysiology and validate new anti-inflammatory and anti-fibrotic treatments.

Introduction

Pulmonary fibrosis is a progressive disease process in which excessive deposition of extracellular matrix components, primarily type I collagen, in the interstitium of the lungs leads to impaired lung function1. The pathophysiology of pulmonary fibrosis is complex, and treatment options are currently quite limited. Mouse models remain an important tool to study the pathogenic mechanisms that contribute to the emergence and progression of the disease, as well as new strategies for drug development.

A variety of animal models of pulmonary fibrosis rely on intratracheal instillation of BLM2,3,4,5,6,7,8,9,10,11,12. However, the distribution of fibrotic changes that BLM causes in the lungs is not uniform, and the animals are at risk of asphyxiation during the instillation process. Although intraperitoneal injection of BLM induces relatively uniform fibrotic changes in the lung, it requires multiple doses because of insufficient drug targeting. Intratracheal aerosol administration via a laryngoscope does not require tracheotomy or puncture, and the resulting drug distribution within the lung is optimal. However, the aerosolized particles are large (5-40 µm), and thus cannot reach the subpleural area of the lung tissue.

In this study, intrapulmonary administration of BLM is carried out by nasal nebulization. During nebulization, the mice breathed spontaneously and inhaled the drug particles. The aerosolized particles were 2.5-4 µm in size, which enabled them not only to distribute evenly throughout the lung but also to reach the subpleural area. Under low magnification, the most significant lung histopathological features of patients with idiopathic pulmonary fibrosis (IPF) are the varying severity of lesions, inconsistent distribution, alternating distribution of different phase lesions, and the presence of interstitial inflammation, fibrotic lesions, and honeycomb lung changes, alternating with normal lung tissue. These pathological changes predominantly involve the peripheral subpleural parenchyma or lobular septum around the bronchioli. Thus, given that this approach enables BLM particles to reach the subpleural area of the lungs, this model closely simulates the clinical characteristics of the disease in humans.

Protocol

The Animal Studies Committee of the China-Japan Friendship Hospital (Beijing, China) approved all of the procedures involving mice that were performed as part of this study (NO.190108). Mice were kept in the sterile animal room of the China-Japan Friendship Clinical Medical Research Institute, with a room temperature of 20-25 °C, relative humidity of 40%-70%, animal light intensity of 15-20 LX, and alternating light and dark for 12 h/12 h. Animals had free access to food and water. …

Representative Results

Lung injury was induced by nebulized BLM, and the control animals were nebulized with the same volume of normal saline. The mice were nebulized once a day for 3 days, 30 min per day, using a BLM concentration of 7 U/mL. Mice were sacrificed on days 9, 16, and 23 after BLM administration for H&E staining (Figure 2B). Diffused pneumonic lesions with loss of the normal alveolar architecture, septal thickening, enlarged alveoli, and increased infiltration of inflammatory cells into the interstitial and p…

Discussion

Intratracheal injection of bleomycin results in an acute inflammatory and fibrotic response in both lungs and can be considered an effective approach to establish an experimental mouse model of human interstitial lung disease. Intratracheal administration is the most commonly used route of administration2,3,4,5,6,7,</sup…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 92068108).

Materials

 bleomycin Bioway/Nippon Kayaku Co Ltd  DP721 Fibrosis model drugs
0.9% saline for injection Baxter Healthcare(Tianjin)Co.,Ltd. Bleomycin preparation
1 mL syringe BD 300481 Anesthetize animals
10% neutral formalin buffer TechaLab Biotech Company Fix lung tissue
15 mL centrifuge tube corning 430790 Prepare for anesthesia
20 °C refrigerator New-fly group BCD-213K Store drugs
4 °C refrigerator New-fly group BCD-213K Store drugs
Adobe illustrator cc2020 Adobe Process images
blue back liquid Beijing Chemical Works tissue staining
clean bench Suzhou Sujie Purifying Equipment Co.,Ltd. Bleomycin preparation
differentiation fluid Beijing Chemical Works tissue staining
Electronic balance METTLER TOLEDO AA-160 Prepare for anesthesia
eosin stain Beijing Yili Fine Chemicals Co,Ltd. tissue staining
Heating pad HIDOM Mice incubation
hematoxylin stain Beijing Yili Fine Chemicals Co,Ltd. tissue staining
phosphate buffered saline (PBS) buffer Hyclone SH30256.01 Clean lung tissue
Photoshop drawing software Adobe Process images
SCIREQ INEXPOSE EMKA Biotech Beijing Co.,Ltd. Atomizing device
Upright fluorescence microscope Olympus BX53 Observe the slice

References

  1. Raghu, G., et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. American Journal of Respiratory and Critical Care Medicine. 198 (5), e44-e68 (2018).
  2. Moore, B. B., Hogaboam, C. M. Murine models of pulmonary fibrosis. American Journal of Physiology. Lung Cellular and Molecular Physiology. 294 (2), L152-L160 (2008).
  3. Degryse, A. L., et al. Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology. 299 (4), L442-L452 (2010).
  4. Sueblinvong, V., et al. Predisposition for disrepair in the aged lung. The American Journal of the Medical Sciences. 344 (1), 41-51 (2012).
  5. Peng, R., et al. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease. PLoS One. 8 (4), e59348 (2013).
  6. Izbicki, G., et al. Time course of bleomycin-induced lung fibrosis. International Journal of Experimental Pathology. 83 (3), 111-119 (2002).
  7. Aguilar, S., et al. Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin-induced pulmonary fibrosis. PLoS One. 4 (11), e8013 (2009).
  8. Ortiz, L. A., et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proceedings of the National Academy of Sciences. 100 (14), 8407-8411 (2003).
  9. Rojas, M., et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. American Journal of Respiratory Cell and Molecular Biology. 33 (2), 145-152 (2005).
  10. Ortiz, L. A., et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences. 104 (26), 11002-11007 (2007).
  11. Foskett, A. M., et al. Phase-directed therapy: TSG-6 targeted to early inflammation improves bleomycin-injured lungs. American Journal of Physiology-Lung Cellular and Molecular Physiology. 306 (2), L120-L131 (2014).
  12. Hecker, L., et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Science Translational Medicine. 6 (231), 231ra47 (2014).
  13. Taooka, Y., et al. Effects of neutrophil elastase inhibitor on bleomycin-induced pulmonary fibrosis in mice. American Journal of Respiratory & Critical Care Medicine. 156 (1), 260-265 (1997).
  14. Gharaee-Kermani, M., Ullenbruch, M., Phan, S. H. Animal models of pulmonary fibrosis. Methods in Molecular Medicine. , 251-259 (2005).
  15. Orlando, F., et al. Induction of mouse lung injury by endotracheal injection of bleomycin. Journal of Visualized Experiments. (146), e58902 (2019).
  16. Moore, B. B., et al. Animal models of fibrotic lung disease. American Journal of Respiratory Cell and Molecular Biology. 49 (2), 167-179 (2013).
  17. Gauldie, J., Kolb, M. Animal models of pulmonary fibrosis: how far from effective reality. American Journal of Physiology-Lung Cellular and Molecular Physiology. 294 (2), L151 (2008).
  18. Jenkins, R. G., et al. An official American thoracic society workshop report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology. 56 (5), 667-679 (2017).
  19. Moeller, A., et al. The bleomycin animal model: A useful tool to investigate treatment options for idiopathic pulmonary fibrosis. The International Journal of Biochemistry & Cell Biology. 40 (3), 362-382 (2008).
This article has been published
Video Coming Soon
Keep me updated:

.

Citer Cet Article
Song, D., Chen, Y., Wang, X., Chen, X., Gao, S., Xu, W., Yang, S., Wang, Z., Peng, L., Dai, H. A Mouse Model of Pulmonary Fibrosis Induced by Nasal Bleomycin Nebulization. J. Vis. Exp. (191), e64097, doi:10.3791/64097 (2023).

View Video