Summary

体外 纳米乳剂疫苗佐剂蛇腓磷素D的细胞活性评价

Published: December 09, 2022
doi:

Summary

该协议提供了评估纳米乳剂蛇腓苷D佐剂是否促进有效细胞免疫应答的详细方法。

Abstract

作为疫苗的主要成分,佐剂可以直接诱导或增强与抗原相关的强大、广泛、先天和适应性免疫应答。Ophiopogonin D(OP-D)是从植物 Ophiopogon japonicus中提取的纯化成分,已被发现可用作疫苗佐剂。采用低能乳化法制备纳米乳液蛇腓磷素D(NOD)可以有效克服OP-D溶解度低、毒性低的问题。在本文中,研究了一系列用于细胞活性评估的 体外 方案使用细胞计数试剂盒-8测定法测定L929的细胞毒性作用。然后,采用ELISA和ELISpot方法检测免疫小鼠脾细胞刺激培养后分泌的细胞因子水平和相应的免疫细胞数。此外,通过激光扫描共聚焦显微镜(CLSM)观察从C57BL / 6小鼠中分离并在与GM-CSF加IL-4孵育后成熟的骨髓来源树突状细胞(BMDCs)中的抗原摄取能力。重要的是,在用佐剂共培养空白小鼠的腹膜巨噬细胞(PM)24小时后,通过ELISA试剂盒测量IL-1β,IL-6和肿瘤坏死因子α(TNF-α)细胞因子的水平来确认巨噬细胞活化。希望该协议将为其他研究人员提供直接有效的实验方法来评估新型疫苗佐剂的细胞反应有效性。

Introduction

疫苗是预防和治疗传染病和非传染性疾病的重要手段。在疫苗制剂中适当添加佐剂和递送载体有利于增强抗原的免疫原性并产生持久的免疫应答1。除了经典的佐剂明矾(铝盐)外,目前上市的疫苗佐剂还有六种:MF592,3,AS04 3,AS03 3AS01 3,CpG10184和Matrix-M5。一般来说,当人体遇到病毒攻击时,第一道和第二级防线(皮肤、粘膜、巨噬细胞)率先清除病毒,最后激活涉及免疫器官和免疫细胞的第三道防线。自 1920 年代初以来,铝盐和铝盐一直是人类疫苗中使用最广泛的佐剂,可引发有效的先天免疫反应6。然而,有人提出,经典佐剂激活抗原呈递细胞(APC),刺激免疫细胞产生特定的细胞因子和趋化因子,是佐剂起作用的机制,可能是佐剂仅对特异性免疫应答产生瞬时作用的原因之一7。有限的人用许可佐剂的存在是开发引起有效免疫反应的疫苗的限制因素8

目前,越来越多的佐剂研究正在证明在小鼠中诱导强烈细胞免疫反应的能力。QS-21已被证明可诱导平衡的T辅助T-1(Th1)和T辅助2(Th2)免疫应答,产生更高水平的抗体滴度,并延长作为佐剂的保护,但其强毒性和溶血特性限制了其作为独立临床佐剂的发展910。OP-D(芦荟皂苷元-O-α-L-鼠李糖吡喃糖1-(1→2)-β-D-吡喃木糖基-(1→3)-β-D-呋喃糖苷)是从中药植物甾本科植物甾体皂苷4中分离出的甾体皂苷之一。此外,它是在黄桐中发现的主要药理活性成分(神麦山),已知具有一定的药理特性11。此外,它是百合科的成员,因其在细胞炎症和心肌损伤中的抑制和保护作用而被广泛使用。例如,OP-D改善了BALB / c小鼠中DNCB诱导的特应性皮炎样病变和肿瘤坏死因子α(TNF-α)炎性HaCaT细胞12。重要的是,OP-D通过减少活性氧的产生和破坏线粒体膜损伤,促进心血管系统的抗氧化保护,并保护心脏免受阿霉素诱导的自噬损伤。实验表明,服用OP-D和单桥粒苷有助于增强免疫健康,增加白细胞计数和DNA合成,并使抗体持续更长时间13。先前已发现OP-D具有佐剂作用14

纳米乳液是由表面活性剂、油、助表面活性剂和水的组合组成的水包油纳米制剂1215。这些纳米疫苗设计允许将抗原和佐剂封装在一起,以增强免疫刺激,保护抗原并促进树突状细胞(DC)成熟16。为了开发从筛选中获得的这些新型佐剂,重要的是找到适当的方法来评估它们的细胞反应能力。

该协议的目的是系统评估佐剂是否可以增强 体外 细胞培养中的吞噬作用和免疫细胞的表达,并详细说明主要的实验方法。实验分为四个小节:(1)OP-D和NOD对L929细胞的毒性通过细胞计数试剂盒-8(CCK-8)测定法确定;(2)通过脾细胞刺激和ELISpot测定检测免疫小鼠内分泌IFN-γ和IL-17A的细胞因子水平以及相应的细胞数;(3)使用共聚焦显微镜观察辅助刺激后DC的抗原呈递能力;(4)检测与佐剂共培养的正常小鼠腹膜巨噬细胞(PMs)获得的上清液中的三种细胞因子IL-1β,IL-6和TNF-α。

Protocol

所有细胞实验均在配备基本手术室、缓冲室、无菌培养室以及鉴定和分析室的细胞工程实验室中进行。工作环境和条件没有微生物污染和其他有害因素。动物实验是根据《实验动物护理和使用指南》进行的,并得到第三军医大学实验动物福利与伦理委员会的批准。 1. 高压灭菌和材料制备 通过在121°C高压灭菌20分钟,通过湿热灭菌来制备试剂和消耗品,例?…

Representative Results

佐剂OP-D和NOD的细胞活性评估根据方案在 体外 完成。L929成纤维细胞是NOD体 外 毒性测试的有用筛选模型(图1)。脾脏中炎性细胞因子水平的定量可以帮助研究人员更好地了解免疫反应(图2)。使用ELISpot监测CTL是在临床试验中评估抗原特异性T细胞免疫和筛选候选疫苗的金标准(图3)。DC对抗原摄取的增加可以引发增…

Discussion

亚单位疫苗具有极佳的安全性,但免疫原性较差。增强免疫原性的主要策略是物理吸附抗原或偶联佐剂,并将其纳入药物递送系统,以促进DC的摄取和呈递。 天然植物皂苷如奎莱皂苷及其衍生物剧毒,不适合开发人类疫苗17。因此,研究疫苗或佐剂对细胞的毒性作用是评价新疫苗的必要第一步。

本研究中提出的方案是根据ISO 10993-5:200918进?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

本研究获得国家重点研发计划2021YFC2302603号资助,国家自然科学基金项目第31670938、32070924、82041045、32000651号,重庆市自然科学基金项目第2014jcyjA0107号和2019jcyjA-msxmx0159号资助,北京市研究生科研与创新项目CYS21519号资助, 陆军军医大学专项拨款2020XBK24号,全国大学生创新创业计划202090031021号资助。

Materials

0.25% Trypsin-EDTA (1x) GIBCO, USA 25200056
96-well filter plates Millipore. Billerica, MA CLS3922
AlPO4 General Chemical Company, USA null
Automated Cell Counter Countstar, China IC1000
BALB/c mice and C57BL/6 mice Beijing HFK Bioscience Co. Ltd null
caprylic/capric triglyceride (GTCC) Beijing Fengli Pharmaceutical Co. Ltd., Beijing, China null
CCK-8 kits Dojindo, Japan CK04
Cell Counting Plate Costar, Corning, USA CO010101
Cell Sieve biosharp, China BS-70-CS
Centrifuge 5810 R Eppendorf, Germany  5811000398
DAPI Sigma-Aldrich, St. Louis, USA D9542
DMEM basic(1x) medium GIBCO, USA C11885500BT
DSZ5000X Inverted Microscope Nikon,Japan DSZ5000X
EL-35 (Cremophor-35) Mumbai, India null
ELISpot classic AID, Germany ELR06
Fetal Bovine Serum GIBCO, USA 10099141C
Full-function Microplate Reader Thermo Fisher Scientific, USA VL0000D2
GFP Sigma-Aldrich, St. Louis, USA P42212
Glutamax Invitrogen, USA 35050061
Granulocyte Macrophage Colony-Stimulating Factor GM-CSF, R&D Systems, USA 315-03
HEPES Invitrogen, USA 15630106
HF 90/240 Incubator Heal Force, Switzerland null
IL-4 PeproTech, USA 042149
L929 cell line FENGHUISHENGWU, China  NCTC clone 929 (RRID:CVCL_0462)
Laser Scanning Confocal Microscopy Zeiss, Germany LSM 980
MONTANE 85 PPI SEPPIC, France L12910
MONTANOX 80 PPI SEPPIC, France 36372K
Mouse IFN-γ ELISA kit Dakewe, China 1210002
Mouse IFN-γ precoated ELISPOT kit Dakewe, China DKW22-2000-096
Mouse IL-17A ELISA kit Dakewe, China 1211702
Mouse IL-17A ELISpotPLUS Kit ebiosciences, USA 3521-4HPW-2
Mouse IL-1β ELISA kit Dakewe, China 1210122
Mouse IL-6 ELISA kit Dakewe, China 1210602
Mouse TNF-α ELISA kit Dakewe, China 1217202
Non-essential amino acids(100x) Invitrogen, USA 11140050
Ophiopogonin-D Chengdu Purui Technology Co. Ltd 945619-74-9
Penicillin-Streptomycin Solution Invitrogen, USA 15070063
Phalloidin Solarbio, China CA1620
Phosphate Buffered Saline ZSGB-BIO, China ZLI-9062
Red Blood Cell Lysis Buffer Solarbio, China R1010
RPMI 1640 medium Hyclone (Life Technology), USA SH30809.01
Sodium pyruvate(100 mM) Invitrogen, USA 11360070
Squalene Sigma, USA S3626
β- Mercaptoethanol Invitrogen, USA 21985023

References

  1. Cao, W., et al. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomaterials. 112, 14-28 (2020).
  2. Ko, E. J., Kang, S. M. Immunology and efficacy of MF59-adjuvanted vaccines. Human Vaccines & Immunotherapeutics. 14 (12), 3041-3045 (2018).
  3. Shi, S., et al. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine. 37 (24), 3167-3178 (2019).
  4. Kuo, T. Y., et al. Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Scientific Reports. 10, 20085 (2020).
  5. Twentyman, E., et al. Interim recommendation of the Advisory Committee on Immunization Practices for use of the Novavax COVID-19 vaccine in persons aged >/=18 years – United States, July 2022. MMWR Morbidity and Mortality Weekly Report. 71 (31), 988-992 (2022).
  6. Wang, Z., et al. Improved aluminum adjuvants eliciting stronger immune response when mixed with hepatitis B virus surface antigens. ACS Omega. 7 (38), 34528-34537 (2022).
  7. Wang, N., Chen, M., Wang, T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. Journal of Controlled Release. 303, 130-150 (2019).
  8. Akin, I., et al. Evaluation of the safety and efficacy of Advax(TM) as an adjuvant: A systematic review and meta-analysis. Advances in Medical Sciences. 67 (1), 10-17 (2022).
  9. Lacaille-Dubois, M. A. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: A review. Phytomedicine. 60, 152905 (2019).
  10. Marty-Roix, R., et al. Identification of QS-21 as an inflammasome-activating molecular component of saponin adjuvants. The Journal of Biological Chemistry. 291 (3), 1123-1136 (2016).
  11. Zhang, Y. Y., et al. Ophiopogonin D attenuates doxorubicin-induced autophagic cell death by relieving mitochondrial damage in vitro and in vivo. The Journal of Pharmacology and Experimental Therapeutics. 352 (1), 166-174 (2015).
  12. An, E. J., et al. Ophiopogonin D ameliorates DNCB-induced atopic dermatitis-like lesions in BALB/c mice and TNF-alpha- inflamed HaCaT cell. Biochemical and Biophysical Research Communications. 522 (1), 40-46 (2020).
  13. Song, X., et al. Effects of polysaccharide from Ophiopogon japonicus on immune response to Newcastle disease vaccine in chicken. Pesquisa Veterinária Brasileira. 36 (12), 1155-1159 (2016).
  14. Tong, Y. N., et al. An immunopotentiator, ophiopogonin D, encapsulated in a nanoemulsion as a robust adjuvant to improve vaccine efficacy. Acta Biomaterialia. 77, 255-267 (2018).
  15. Lin, C. A., et al. Hyaluronic acid-glycine-cholesterol conjugate-based nanoemulsion as a potent vaccine adjuvant for T cell-mediated immunity. Pharmaceutics. 13 (10), 1569 (2021).
  16. Xu, H. H., et al. Global metabolomic and lipidomic analysis reveals the potential mechanisms of hemolysis effect of ophiopogonin D and ophiopogonin D’ in vivo. Chinese Medicine. 16 (1), 3 (2021).
  17. Drane, D., Gittleson, C., Boyle, J., Maraskovsky, E. ISCOMATRIX adjuvant for prophylactic and therapeutic vaccines. Expert Review of Vaccines. 6 (5), 761-772 (2007).
  18. Rudolf, R., et al. Microstructure characterisation and identification of the mechanical and functional properties of a new PMMA-ZnO composite. Materials. 13 (12), 2717 (2020).
  19. Cannella, V., et al. Cytotoxicity evaluation of endodontic pins on L929 cell line. BioMed Research International. 2019, 3469525 (2019).
  20. Jiao, G., et al. Limitations of MTT and CCK-8 assay for evaluation of graphene cytotoxicity. RSC Advances. 5 (66), 53240-53244 (2015).
  21. Ghasemi, M., Turnbull, T., Sebastian, S., Kempson, I. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences. 22 (23), 12827 (2021).
  22. Li, W., Zhou, J., Xu, Y. Study of the in vitro cytotoxicity testing of medical devices. Biomedical Reports. 3 (5), 617-620 (2015).
  23. Wu, F., et al. Correlation between elevated inflammatory cytokines of spleen and spleen index in acute spinal cord injury. Journal of Neuroimmunology. 344, 577264 (2020).
  24. Lewis, S. M., Williams, A., Eisenbarth, S. C. Structure and function of the immune system in the spleen. Science Immunology. 4 (33), (2019).
  25. Cox, J. H., Ferrari, G., Janetzki, S. Measurement of cytokine release at the single cell level using the ELISPOT assay. Methods. 38 (4), 274-282 (2006).
  26. Elliott, A. D. Confocal microscopy: Principles and modern practices. Current Protocols in Cytometry. 92 (1), 68 (2020).
  27. Zhou, Y., et al. CD4(+) T cell activation and inflammation in NASH-related fibrosis. Frontiers in Immunology. 13, 967410 (2022).
  28. Martinez, F. O., Sica, A., Mantovani, A., Locati, M. Macrophage activation and polarization. Frontiers in Bioscience. 13, 453-461 (2008).
  29. Quesniaux, V., Erard, F., Ryffel, B. Adjuvant activity on murine and human macrophages. Methods in Molecular Biology. 626, 117-130 (2010).
check_url/fr/64291?article_type=t

Play Video

Citer Cet Article
Luo, X., Tong, Y., Zeng, X., Ye, Y., Yang, Y., Song, Z., Zhang, Z., Li, H., Gao, J., Mao, X., Zeng, H., Zou, Q., Sun, H. In Vitro Cellular Activity Evaluation of the Nanoemulsion Vaccine Adjuvant Ophiopogonin D. J. Vis. Exp. (190), e64291, doi:10.3791/64291 (2022).

View Video