Summary

用于分析基因工程小鼠模型中原位ATC肿瘤的高分辨率超声检查

Published: October 11, 2022
doi:

Summary

本协议描述了用于可视化整个小鼠甲状腺和监测间变性甲状腺癌生长的高频超声检查。

Abstract

间变性甲状腺癌(ATC)与预后不良和中位生存时间短有关,但没有有效的治疗方法可显著改善结局。模仿ATC进展的基因工程小鼠模型可能有助于研究人员研究这种疾病的治疗方法。杂交三种不同基因型的小鼠, TPO-cre / ERT2;布拉夫CA/wt;建立了Trp53 Δex2-10/Δex2-10转基因ATC模型。腹腔注射他莫昔芬,过表达BrafV600E ,Trp53缺失诱导ATC小鼠模型,约1个月内产生肿瘤。应用高分辨率超声研究肿瘤的发生和发展,通过测量肿瘤大小获得动态生长曲线。与磁共振成像(MRI)和计算机断层扫描相比,超声在观察ATC鼠模型方面具有无创,便携,实时和无辐射暴露的优势。高分辨率超声适用于动态和多重测量。然而,小鼠甲状腺的超声检查需要相关的解剖学知识和经验。本文提供了利用高分辨率超声扫描转基因ATC模型中肿瘤的详细程序。同时,列出了超声参数调整、超声扫描技巧、动物的麻醉和恢复以及其他过程中需要注意的要素。

Introduction

虽然间变性甲状腺癌(ATC)占甲状腺癌的不到2%,但它每年导致超过50%的甲状腺癌相关死亡。诊断为 ATC 后的中位生存时间仅为约 6 个月,并且没有可显著提高生存率的治疗方法12

ATC的罕见性阻碍了研究疾病如何开始和积极进展的研究。最近出现了模仿该疾病的基因工程小鼠模型,这些模型提供了对该疾病及其对可能治疗方法的反应的见解345。此类研究需要精确的肿瘤成像进行测量和监测,这通常使用磁共振成像、计算机断层扫描或高分辨率超声检查进行67。超声检查已广泛用于小鼠器官。它比磁共振成像和计算机断层扫描具有优势,因为它可以实时进行并且不会使受试者暴露于辐射中,并且必要的设备足够小,可以携带89。然而,使用超声连续监测ATC生长的研究很少;因此,这项工作探讨了超声在这种情况下的效用。

在这里,提出了一种使用高分辨率超声检查在ATC小鼠模型中准确扫描,监测和测量肿瘤的方案。

Protocol

本研究经四川大学动物护理与利用委员会批准进行。 TPO-cre/ERT2;布拉夫CA/wt;本研究使用Trp53 Δex2-10/ Δex2-10 转基因小鼠10 (见 材料表)。如有必要,可以针对不同的动物物种修改协议步骤。这里使用了12只小鼠,包括6只雌性和6只雄性,平均年龄为93天。 1. 实验准备 打开超声检查系统(参见 材料?…

Representative Results

研究开始时的平均右侧ATC尺寸为4.867 mm 2,平均左侧ATC尺寸为5.189 mm2。在第四次测量中,平均右侧ATC大小已增长到11.844mm 2,而左叶的肿瘤大小已增长到9.280mm2。总 ATC 尺寸从 10.057 mm 2 增加到 15.843 mm2。在研究的后期,ATC迅速增长。就标记为“P92”的小鼠(表1)而言,第四次测量的肿瘤大小几乎是初始测量的四倍。四只小鼠的代表性测量?…

Discussion

该协议使用高分辨率超声检查来分析基因工程小鼠模型中的原位ATC肿瘤。转基因模型,基因型为 TPO-cre/ERT2; 布拉夫CA/wt;Trp53 Δex2-10/Δex2-10,由我们的实验室开发。动物过度表达BrafV600E 而缺乏Trp53;腹膜内注射他莫昔芬导致肿瘤生长约1个月10。肿瘤生长迅速,并在50天内达到可测量的大小。该方案用于监测肿瘤生长4个月。

?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项研究没有获得公共、商业或非营利资助机构的具体资助。

Materials

Adhesive tape Winner
Anesthesia system RWDlifescience
Brafflox/wt mice Collaboration with Institute of Life Science, eBond Pharmaceutical Technology Ltd, Chengdu, China
Chamber for anesthesia induction RWDlifescience
Cotton swabs Winner
Depilatory cream Veet
Electric heating blanket Petbee
Isoflurane vaporizer RWDlifescience
Medical gloves Winner
Paper towels Breeze B914JY
TPO-cre/ERT2 mice Collaboration with Institute of Life Science, eBond Pharmaceutical Technology Ltd, Chengdu, China
Trp53flox/wt mice Collaboration with Institute of Life Science, eBond Pharmaceutical Technology Ltd, Chengdu, China
Ultrasound gel Keppler KL-250
Ultrasound machine VisualSonics Vevo 3100

References

  1. Maniakas, A., et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000-2019. JAMA Oncology. 6 (9), 1397-1404 (2020).
  2. Molinaro, E., et al. Anaplastic thyroid carcinoma: From clinicopathology to genetics and advanced therapies. Nature Reviews Endocrinology. 13 (11), 644-660 (2017).
  3. Champa, D., Di Cristofano, A. Modeling anaplastic thyroid carcinoma in the mouse. Hormones and Cancer. 6 (1), 37-44 (2015).
  4. Vitiello, M., Kusmic, C., Faita, F., Poliseno, L. Analysis of lymph node volume by ultra-high-frequency ultrasound imaging in the Braf/Pten genetically engineered mouse model of melanoma. Journal of Visualized Experiments. (175), e62527 (2021).
  5. Wang, Y., et al. Low intensity focused ultrasound (LIFU) triggered drug release from cetuximab-conjugated phase-changeable nanoparticles for precision theranostics against anaplastic thyroid carcinoma. Biomaterials Science. 27 (1), 196-210 (2018).
  6. Mohammed, A., et al. Early detection and prevention of pancreatic cancer: Use of genetically engineered mouse models and advanced imaging technologies. Current Medicinal Chemistry. 19 (22), 3701-3713 (2012).
  7. Wege, A. K., et al. High resolution ultrasound including elastography and contrast-enhanced ultrasound (CEUS) for early detection and characterization of liver lesions in the humanized tumor mouse model. Clinical Hemorheology and Microcirculation. 52 (2-4), 93-106 (2012).
  8. Greco, A., et al. Preclinical imaging for the study of mouse models of thyroid cancer. International Journal of Molecular Sciences. 18 (12), 2731 (2017).
  9. Renault, G., et al. High-resolution ultrasound imaging of the mouse. Journal of Radiologie. 87, 1937-1945 (2006).
  10. McFadden, D. G., et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America. 111 (16), 1600-1609 (2014).
  11. Garassini, M. Basic principles of ultrasonic diagnosis. GEN. 39 (4), 283-289 (1985).
  12. Aldrich, J. E. Basic physics of ultrasound imaging. Critical Care Medicine. 35, 131-137 (2007).
  13. Mancini, M., et al. Morphological ultrasound microimaging of thyroid in living mice. Endocrinology. 150 (10), 4810-4815 (2009).
  14. Ying, M., Yung, D. M., Ho, K. K. Two-dimensional ultrasound measurement of thyroid gland volume: a new equation with higher correlation with 3-D ultrasound measurement. Ultrasound in Medicine & Biology. 34 (1), 56-63 (2008).
check_url/fr/64615?article_type=t

Play Video

Citer Cet Article
He, Y., Luo, Y., Li, Z., Luo, H., Yan, H., Ma, Y., Zhou, X. High-Resolution Ultrasonography for the Analysis of Orthotopic ATC Tumors in a Genetically Engineered Mouse Model. J. Vis. Exp. (188), e64615, doi:10.3791/64615 (2022).

View Video