Summary

Analysis of Organochlorine Pesticides in a Soil Sample by a Modified QuEChERS Approach Using Ammonium Formate

Published: January 20, 2023
doi:

Summary

The present protocol describes the utilization of ammonium formate for phase partitioning in QuEChERS, together with gas chromatography-mass spectrometry, to successfully determine organochlorine pesticide residues in a soil sample.

Abstract

Currently, the QuEChERS method represents the most widely used sample preparation protocol worldwide for analyzing pesticide residues in a broad variety of matrices both in official and non-official laboratories. The QuEChERS method using ammonium formate has previously proven to be advantageous compared to the original and the two official versions. On the one hand, the simple addition of 0.5 g of ammonium formate per gram of sample is sufficient to induce phase separation and achieve good analytical performance. On the other hand, ammonium formate reduces the need for maintenance in routine analyses. Here, a modified QuEChERS method using ammonium formate was applied for the simultaneous analysis of organochlorine pesticide (OCP) residues in agricultural soil. Specifically, 10 g of the sample was hydrated with 10 mL of water and then extracted with 10 mL of acetonitrile. Next, phase separation was carried out using 5 g of ammonium formate. After centrifugation, the supernatant was subjected to a dispersive solid-phase extraction clean-up step with anhydrous magnesium sulfate, primary-secondary amine, and octadecylsilane. Gas chromatography-mass spectrometry was used as the analytical technique. The QuEChERS method using ammonium formate is demonstrated as a successful alternative for extracting OCP residues from a soil sample.

Introduction

The need to increase food production has led to the intensive and widespread use of pesticides worldwide over the last few decades. Pesticides are applied to the crops to protect them from pests and increase crop yields, but their residues usually end up in the soil environment, especially in agricultural areas1. Furthermore, some pesticides, such as organochlorine pesticides (OCPs), have a very stable structure, so their residues do not decompose easily and persist in the soil for a long time2. Generally, the soil has a high capacity to accumulate pesticide residues, especially when it has a high content of organic matter3. As a result, the soil is one of the environmental compartments most contaminated by pesticide residues. As an example, one of the complete studies to date found that 83% of 317 agricultural soils from across the European Union were contaminated with one or more pesticide residues4.

Soil pollution by pesticide residues may affect non-target species, soil function, and consumer health through the food chain because of the high toxicity of the residues5,6. Consequently, the evaluation of pesticide residues in soils is essential to assess their potential negative effects on the environment and human health, particularly in developing countries due to a lack of strict regulations on the use of pesticides7. This makes pesticide multi-residue analysis increasingly important. However, the rapid and accurate analysis of pesticide residues in soils is a difficult challenge due to the large number of interfering substances, as well as the low concentration level and the diverse physicochemical properties of these analytes4.

Of all the pesticide residue analysis methods, the QuEChERS method has become the quickest, easiest, cheapest, most effective, robust, and safest option8. The QuEChERS method involves two steps. In the first step, a microscale extraction based on partitioning via salting-out between an aqueous and an acetonitrile layer is performed. In the second step, a cleaning process is carried out employing a dispersive solid phase extraction (dSPE); this technique uses small amounts of several combinations of porous sorbents to remove matrix-interfering components and overcomes the disadvantages of conventional SPE9. Hence, the QuEChERS is an environmentally friendly approach with little solvent/chemical going to waste that provides very accurate results and minimizes potential sources of random and systematic errors. In fact, it has been successfully applied for the high-throughput routine analysis of hundreds of pesticides, with strong applicability in almost all types of environmental, agri-food, and biological samples8,10. This work aims to apply and validate a new modification of the QuEChERS method that was previously developed and coupled to GC-MS to analyze OCPs in agricultural soil.

Protocol

1. Preparation of the stock solutions NOTE: It is recommended to wear nitrile gloves, a lab coat, and safety glasses during the entire protocol. Prepare a stock solution in acetone at 400 mg/L from a commercial mix of OCPs (see Table of Materials) at 2,000 mg/L in hexane:toluene (1:1) in a 25 mL volumetric flask. Table 1 shows each of the selected OCPs. Prepare the subsequent stock solutions in acetone at concentrations o…

Representative Results

The full validation of the analytical method was performed in terms of linearity, matrix effects, recovery, and repeatability. Matrix-matched calibration curves with spiked blank samples at six concentration levels (5 µg/kg, 10 µg/kg, 50 µg/kg, 100 µg/kg, 200 µg/kg, and 400 µg/kg) were used for the linearity assessment. The determination coefficients (R2) were higher than or equal to 0.99 for all the OCPs. The lowest calibration level (LCL) was set at 5…

Discussion

The original9 and the two official versions13,14 of the QuEChERS method use magnesium sulfate together with sodium chloride, acetate, or citrate salts to promote acetonitrile/water mixture separation during extraction. However, these salts tend to be deposited as solids on the surfaces in the mass spectrometry (MS) source, which causes the need for increased maintenance of liquid chromatography (LC)-MS-based methods. In terms of overcoming…

Divulgations

The authors have nothing to disclose.

Acknowledgements

I would like to thank Javier Hernández-Borges and Cecilia Ortega-Zamora for their invaluable support. I also want to thank the Universidad EAN and the Universidad de La Laguna.

Materials

15 mL disposable glass conical centrifuge tubes PYREX 99502-15
2 mL centrifuge tubes Eppendorf 30120094
50 mL centrifuge tubes with screw caps VWR 21008-169
5977B mass-selective detector Agilent Technologies 1617R019
7820A gas chromatography system Agilent Technologies 16162016
Acetone Supelco 1006582500
Acetonitrile VWR 83642320
Ammonium formate VWR 21254260
Automatic shaker KS 3000 i control IKA 3940000
Balance Sartorius Lab Instruments Gmbh & Co ENTRIS224I-1S
Bondesil-C18, 40 µm Agilent Technologies 12213012
Bondesil-PSA, 40 µm Agilent Technologies 12213024
Cyclohexane VWR 85385320
EPA TCL pesticides mix Sigma Aldrich 48913
Ethyl acetate Supelco 1036492500
G4567A automatic sampler Agilent Technologies 19490057
HP-5ms Ultra Inert (5%-phenyl)-methylpolysiloxane 30 m x 250 µm x 0.25 µm column Agilent Technologies 19091S-433UI
Magnesium sulfate monohydrate Sigma Aldrich 434183-1KG
Mega Star 3.R centrifuge VWR 521-1752
Milli-Q gradient A10 Millipore RR400Q101
p,p'-DDE-d8 Dr Ehrenstorfer DRE-XA12041100AC
Pipette tips 2 – 200 µL BRAND 732008
Pipette tips 5 mL BRAND 702595
Pipette tips 50 – 1000 uL BRAND 732012
Pippette Transferpette S variabel 10 – 100 µL BRAND 704774
Pippette Transferpette S variabel 100 – 1000 µL BRAND 704780
Pippette Transferpette S variabel 20 – 200 µL BRAND 704778
Pippette Transferpette S variabel 500 – 5000 µL BRAND 704782
Vials with fused-in insert Sigma Aldrich 29398-U
OCPs CAS registry number
α-BHC 319-84-6
β-BHC 319-85-7
Lindane 58-89-9
δ-BHC 319-86-8
Heptachlor 76-44-8
Aldrin 309-00-2
Heptachlor epoxide 1024-57-3
α-Endosulfan 959-98-8
4,4'-DDE-d8 (IS) 93952-19-3
4,4'-DDE 72-55-9
Dieldrin 60-57-1
Endrin 72-20-8
β-Endosulfan 33213-65-9
4,4'-DDD 72-54-8
Endosulfan sulfate 1031-07-8
4,4'-DDT 50-29-3
Endrin ketone 53494-70-5
Methoxychlor 72-43-5

References

  1. Sabzevari, S., Hofman, J. A worldwide review of currently used pesticides’ monitoring in agricultural soils. Science of The Total Environment. 812, 152344 (2022).
  2. Tzanetou, E. N., Karasali, H. A. Comprehensive review of organochlorine pesticide monitoring in agricultural soils: The silent threat of a conventional agricultural past. Agriculture. 12 (5), 728 (2022).
  3. Farenhorst, A. Importance of soil organic matter fractions in soil-landscape and regional assessments of pesticide sorption and leaching in soil. Soil Science Society of America Journal. 70 (3), 1005-1012 (2006).
  4. Silva, V., et al. Pesticide residues in European agricultural soils – A hidden reality unfolded. Science of The Total Environment. 653, 1532-1545 (2019).
  5. Vischetti, C., et al. Sub-lethal effects of pesticides on the DNA of soil organisms as early ecotoxicological biomarkers. Frontiers in Microbiology. 11, 1892 (2020).
  6. Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., Wang, M. -. Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics. 9 (3), 42 (2021).
  7. Zikankuba, V. L., Mwanyika, G., Ntwenya, J. E., James, A. Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food & Agriculture. 5 (1), 1601544 (2019).
  8. Varela-Martínez, D. A., González-Sálamo, J., González-Curbelo, M. &. #. 1. 9. 3. ;., Hernández-Borges, J. Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) extraction. Handbooks in Separation Science. , 399-437 (2020).
  9. Anastassiades, M., Lehotay, S. J., Štajnbaher, D., Schenck, F. J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. Journal of AOAC International. 86 (2), 412-431 (2003).
  10. González-Curbelo, M. &. #. 1. 9. 3. ;., et al. Evolution and applications of the QuEChERS method. Trends in Analytical Chemistry. 71, 169-185 (2015).
  11. European Union. European Regulation (EC) NO 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Official Journal of the European Union. 70, 1-16 (2005).
  12. Kwon, H., Lehotay, S. J., Geis-Asteggiante, L. Variability of matrix effects in liquid and gas chromatography-mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops. Journal of Chromatography A. 1270, 235-245 (2012).
  13. Lehotay, S. J., et al. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. Journal of AOAC International. 90 (2), 485-520 (2007).
  14. European Committee for Standardization (CEN). Standard Method EN 15662. Food of plant origin-Determination of pesticide residues using GC-MS and/or LC-MS/MS following acetonitrile extraction/partitioning and clean-up by dispersive SPE-QuEChERS method. European Committee for Standardization. , (2008).
  15. González-Curbelo, M. &. #. 1. 9. 3. ;., Lehotay, S. J., Hernández-Borges, J., Rodríguez-Delgado, M. &. #. 1. 9. 3. ;. Use of ammonium formate in QuEChERS for high-throughput analysis of pesticides in food by fast, low-pressure gas chromatography and liquid chromatography tandem mass spectrometry. Journal of Chromatography A. 1358, 75-84 (2014).
  16. Han, L., Sapozhnikova, Y., Lehotay, S. J. Method validation for 243 pesticides and environmental contaminants in meats and poultry by tandem mass spectrometry coupled to low-pressure gas chromatography and ultrahigh-performance liquid chromatography. Food Control. 66, 270-282 (2016).
  17. Lehotay, S. J., Han, L., Sapozhnikova, Y. Automated mini-column solid-phase extraction clean-up for high-throughput analysis of chemical contaminants in foods by low-pressure gas chromatography-tandem mass spectrometry. Chromatographia. 79 (17), 1113-1130 (2016).
  18. Lehotay, S. J. Possibilities and limitations of isocratic fast liquid chromatography-tandem mass spectrometry analysis of pesticide residues in fruits and vegetables. Chromatographia. 82 (1), 235-250 (2019).
  19. Han, L., Matarrita, J., Sapozhnikova, Y., Lehotay, S. J. Evaluation of a recent product to remove lipids and other matrix co-extractives in the analysis of pesticide residues and environmental contaminants in foods. Journal of Chromatography A. 1449, 17-29 (2016).
  20. Varela-Martínez, D. A., González-Curbelo, M. &. #. 1. 9. 3. ;., González-Sálamo, J., Hernández-Borges, J. Analysis of pesticides in cherimoya and gulupa minor tropical fruits using AOAC 2007.1 and ammonium formate QuEChERS versions: A comparative study. Microchemical Journal. 157, 104950 (2020).
  21. González-Curbelo, M. &. #. 1. 9. 3. ;., Varela-Martínez, D. A., Riaño-Herrera, D. A. Pesticide-residue analysis in soils by the QuEChERS method: A review. Molecules. 27 (13), 4323 (2022).
  22. Anastassiades, M., Maštovská, K., Lehotay, S. Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. Journal of Chromatography A. 1015 (1-2), 163-184 (2003).
  23. Maštovská, K., Lehotay, S., Anastassiades, M. Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes. Analytical Chemistry. 77 (24), 8129-8137 (2005).
  24. Rahman, M., Abd El-Aty, A., Shim, J. Matrix enhancement effect: A blessing or a curse for gas chromatography? – A review. Analytica Chimica Acta. 801, 14-21 (2013).
  25. Rouvire, F., Buleté, A., Cren-Olivé, C., Arnaudguilhem, C. Multiresidue analysis of aromatic organochlorines in soil by gas chromatography-mass spectrometry and QuEChERS extraction based on water/dichloromethane partitioning. Comparison with accelerated solvent extraction. Talanta. 93, 336-344 (2012).
  26. Lesueur, C., Gartner, M., Mentler, A., Fuerhacker, M. Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas chromatography-mass spectrometry and liquid chromatography-ion trap-mass spectrometry. Talanta. 75 (1), 284-293 (2008).
  27. Ðurović-Pejčev, R. D., Bursić, V. P., Zeremski, T. M. Comparison of QuEChERS with traditional sample preparation methods in the determination of multiclass pesticides in soil. Journal of AOAC International. 102 (1), 46-51 (2019).
  28. European Commission. SANTE/11312/2021. Guidance document on analytical quality control and method validation procedures for pesticide residues analysis in food and feed. European Commission. , (2021).
check_url/fr/64901?article_type=t

Play Video

Citer Cet Article
González-Curbelo, M. Á. Analysis of Organochlorine Pesticides in a Soil Sample by a Modified QuEChERS Approach Using Ammonium Formate. J. Vis. Exp. (191), e64901, doi:10.3791/64901 (2023).

View Video