Summary

使用石墨烯电极阵列进行脑映射

Published: October 20, 2023
doi:

Summary

我们提出了一种基于石墨烯阵列的脑映射程序,以减少侵入性并提高时空分辨率。基于石墨烯阵列的表面电极表现出长期的生物相容性、机械灵活性和在卷曲大脑中用于大脑映射的适用性。该协议允许同时和顺序构建多种形式的感官图谱。

Abstract

皮质图表示大脑皮层中对感觉运动刺激的位置依赖性神经反应的空间组织,从而能够预测生理相关行为。各种方法,如穿透电极、脑电图、正电子发射断层扫描、脑磁图和功能性磁共振成像,已被用于获得皮质图。然而,这些方法受到时空分辨率差、信噪比(SNR)低、成本高、非生物相容性或对大脑造成物理损害的限制。本研究提出了一种基于石墨烯阵列的体感映射方法,作为皮质电图的一个特点,该方法具有优异的生物相容性、高时空分辨率、理想的信噪比和最小的组织损伤,克服了以前方法的缺点。本研究证明了石墨烯电极阵列在大鼠体感映射中的可行性。所提出的方案不仅可以应用于躯体感觉皮层,还可以应用于其他皮层,例如听觉、视觉和运动皮层,为临床实施提供先进的技术。

Introduction

皮质图是一组局部斑块,表示大脑皮层中对感觉运动刺激的反应属性。它们是神经网络的空间形成,能够预测感知和认知。因此,皮质图可用于评估对外部刺激的神经反应和处理感觉运动信息1,2,3,4。有创和非侵入性方法可用于皮质映射。最常见的侵入性方法之一是使用皮质内(或穿透)电极来映射5,6,7,8。

使用穿透电极评估按需高分辨率皮质图面临着几个障碍。该方法太费力,无法获得像样的地图,而且侵入性太强,无法在临床上使用,从而阻碍了进一步发展。脑电图 (EEG)、正电子发射断层扫描 (PET)、脑磁图 (MEG) 和功能性磁共振成像 (fMRI) 等最新技术越来越受欢迎,因为这些技术侵入性较小且可重复。然而,鉴于其高昂的成本和解决率低,它们在有限数量的案例中使用9,10,11。近年来,具有优异信号可靠性的柔性表面电极引起了广泛的关注。基于石墨烯的表面电极表现出长期的生物相容性和机械灵活性,在复杂的大脑中提供稳定的记录12,13,14,15,16。我们小组最近开发了一种基于石墨烯的多通道阵列,用于皮质表面的高分辨率记录和位点特异性神经刺激。这项技术使我们能够长时间跟踪感官信息的皮层表征。

本文介绍了使用 30 通道石墨烯多电极阵列获取体感皮层大脑图所涉及的步骤。为了测量大脑活动,将石墨烯电极阵列放置在皮层的硬膜下区域,同时用木棍刺激前爪,前肢,后爪,后肢,躯干和胡须。记录体感区域的体感诱发电位 (SEP)。该协议也可以应用于其他大脑区域,例如听觉,视觉和运动皮层。

Protocol

所有动物处理程序均已获得仁川国立大学机构动物护理和使用委员会的批准(INU-ANIM-2017-08)。 1. 动物手术准备 注意:使用Sprague Dawley Rat(8-10周大)进行本实验,没有性别偏见。 腹膜内用90mg / kg氯胺酮和10mg / kg甲苯噻嗪混合物麻醉大鼠。为了在整个手术过程中保持所需的麻醉深度,当大鼠出现醒来迹象时,提供补充 45 mg/kg 氯胺酮和 5…

Representative Results

该协议描述了石墨烯多通道阵列如何安装在大脑表面。通过获取对物理刺激的神经反应并计算反应的幅度来构建体感图。 图1 显示了该实验的示意图。 图2A 显示了石墨烯电极阵列的结构特征。电极之间有基板的通孔。这些孔有助于电极牢固地接触皮质表面(图2B)。电极与皮层的强粘附有助于以更少的噪音记…

Discussion

所提出的协议提供了一个深入的分步过程,解释了如何使用石墨烯电极阵列访问和映射大鼠的体感反应。协议获取的数据是标准必要专利,提供与每个身体部位突触相关的躯体感觉信息。

应考虑该协议的几个方面。在提取脑脊液以防止脑水肿和减轻炎症时,实验者不要损坏位于大池前面的脑干至关重要。

面部胡须提供有关周围环境的触觉感官信息,例如…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了仁川国立大学(国际合作)对Sunggu Yang的支持。

Materials

1mL syringe KOREAVACCINE CORPORATION injecting the drug for anesthesia 
3mL syringe KOREAVACCINE CORPORATION injecting the drug for anesthesia 
Bone rongeur Fine Science Tools 16220-14 remove the skull
connector Gbrain Connect graphene electrode to headstage
drill FALCON tool grind the skull
drill bits Osstem implant grind the skull
Graefe iris forceps slightly curved serrated vubu vudu-02-73010 remove the tissue from the skull or hold wiper
graphene multielectrode array Gbrain records signals from neuron
isoflurane Hana Pharm Corporation sacrifce the subject
ketamine yuhan corporation used for anesthesia
lidocaine(2%) Daihan pharmaceutical  local anesthetic
Matlab R2021b Mathworks Data analysis Software
mosquito hemostats Fine Science Tools 91309-12 fasten the scalp
ointment Alcon prevent eye from drying out 
povidone Green Pharmaceutical corporation disinfect the incision area
RHS 32ch Stim/Record headstage intan technologies M4032 connect connector to interface cable and contain intan RHS stim/amplifier chip
RHS 6-ft (1.8m) Stim SPI interface cable intan technologies M3206 connect graphene electrode to headstage
RHS Stim/Recording controller software intan technologies Data Acquisition Software
RHS stimulation/ Recording controller intan technologies M4200
saline JW Pharmaceutical
scalpel Hammacher HSB 805-03
stereotaxic instrument stoelting fasten the subject
sterile Hypodermic Needle KOREAVACCINE CORPORATION remove the dura mater
Steven Iris Tissue Forceps KASCO 50-2026 remove the dura mater
surgical blade no.11 FEATHER inscise the scalp
surgical sicssors Fine Science Tools 14090-09 inscise the scalp and remove the dura mater
wooden stick whisker stimulation
xylazine Bayer Korea used for anesthesia

References

  1. Leergaard, T. B., et al. Rat somatosensory cerebropontocerebellar pathways: spatial relationships of the somatotopic map of the primary somatosensory cortex are preserved in a three-dimensional clustered pontine map. Journal of Comparative Neurology. 422 (2), 246-266 (2000).
  2. Craner, S. L., Ray, R. H. Somatosensory cortex of the neonatal pig: I. Topographic organization of the primary somatosensory cortex (SI). Journal of Comparative Neurology. 306 (1), 24-38 (1991).
  3. Benison, A. M., Rector, D. M., Barth, D. S. Hemispheric mapping of secondary somatosensory cortex in the rat. Journal of Neurophysiology. 97 (1), 200-207 (2007).
  4. Lee, M., et al. Graphene-electrode array for brain map remodeling of the cortical surface. NPG Asia Materials. 13 (1), (2021).
  5. Yang, S. C., Weiner, B. D., Zhang, L. S., Cho, S. J., Bao, S. W. Homeostatic plasticity drives tinnitus perception in an animal model. Proceedings of the National Academy of Sciences of the United States of America. 108 (36), 14974-14979 (2011).
  6. Yang, S., Zhang, L. S., Gibboni, R., Weiner, B., Bao, S. W. Impaired development and competitive refinement of the cortical frequency map in tumor necrosis factor-alpha-deficient mice. Cerebral Cortex. 24 (7), 1956-1965 (2014).
  7. Miyakawa, A., et al. Tinnitus correlates with downregulation of cortical glutamate decarboxylase 65 expression but not auditory cortical map reorganization. Journal of Neuroscience. 39 (50), 9989-10001 (2019).
  8. Yang, S., Su, W., Bao, S. Long-term, but not transient, threshold shifts alter the morphology and increase the excitability of cortical pyramidal neurons. Journal of Neurophysiology. 108 (6), 1567-1574 (2012).
  9. Beniczky, S., Schomer, D. L. Electroencephalography: basic biophysical and technological aspects important for clinical applications. Epileptic Disorders. 22 (6), 697-715 (2020).
  10. Kim, S. G., Richter, W., Uğurbil, K. Limitations of temporal resolution in functional MRI. Magnetic Resonance Medicine. 37 (4), 631-636 (1997).
  11. Cho, Z. H., et al. A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain. Proteomics. 8 (6), 1302-1323 (2008).
  12. Viventi, J., et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neuroscience. 14 (12), 1599-1605 (2011).
  13. Masvidal-Codina, E., et al. High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors. Nature Materials. 18 (3), 280-288 (2019).
  14. Blaschke, B. M., et al. Mapping brain activity with flexible graphene micro-transistors. 2D Materials. 4 (2), 025040 (2017).
  15. Park, S. W., et al. Epidural electrotherapy for epilepsy. Small. 14 (30), 1801732 (2018).
  16. Lim, J., et al. Hybrid graphene electrode for the diagnosis and treatment of epilepsy in free-moving animal models. NPG Asia Materials. 15 (1), 7 (2023).
  17. Hermanns, H., et al. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review. British Journal of Anaesthesia. 123 (3), 335-349 (2019).
  18. Tchoe, Y., et al. Human brain mapping with multithousand-channel PtNRGrids resolves spatiotemporal dynamics. Science Translational Medicine. 14 (628), (2022).
  19. Wilent, W. B., Contreras, D. Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nature Neuroscience. 8 (10), 1364-1370 (2005).
  20. Insanally, M. N., Köver, H., Kim, H., Bao, S. Feature-dependent sensitive periods in the development of complex sound representation. Journal of Neuroscience. 29 (17), 5456-5462 (2009).
check_url/fr/64910?article_type=t

Play Video

Citer Cet Article
Kim, D., Jeong, M., Kim, E., Kim, G., Na, J., Yang, S. Brain Mapping Using a Graphene Electrode Array. J. Vis. Exp. (200), e64910, doi:10.3791/64910 (2023).

View Video