Summary

암 세포주를 이용한 트랜스미토콘드리아 Cybrid 생성

Published: March 17, 2023
doi:

Summary

이 프로토콜은 종양 형성 과정에서 미토콘드리아의 역할을 연구하기 위한 도구로서 현탁액 성장 암세포에서 사이브리드를 생성하는 기술을 설명합니다.

Abstract

최근 몇 년 동안 미토콘드리아와 암 사이의 연관성을 확인하는 데 전념하는 연구의 수가 크게 증가했습니다. 그러나 미토콘드리아와 종양 형성의 변화와 관련된 연관성을 완전히 이해하고 종양 관련 미토콘드리아 표현형을 식별하기 위해서는 여전히 더 많은 노력이 필요합니다. 예를 들어, 종양 형성 및 전이 과정에서 미토콘드리아의 기여도를 평가하려면 다양한 핵 환경에서 종양 세포에서 미토콘드리아의 영향을 이해하는 것이 필수적입니다. 이를 위해 가능한 한 가지 접근법은 미토콘드리아를 다른 핵 배경으로 전달하여 소위 사이브리드 세포를 얻는 것입니다. 전통적인 사이브리드화 기술에서, mtDNA가 결여된 세포주(ρ0, 핵 공여 세포)는 적출된 세포 또는 혈소판에서 유래된 미토콘드리아로 다시 채워집니다. 그러나, 적출 과정은 배양 플레이트에 대한 양호한 세포 부착을 필요로 하며, 이는 침습성 세포에서 많은 경우에 부분적으로 또는 완전히 손실되는 특징이다. 또한, 전통적인 방법에서 발견되는 또 다른 어려움은 생성된 사이브리드에서 두 개의 상이한 mtDNA 종의 존재를 피하면서, 순수한 핵 및 미토콘드리아 DNA 배경을 얻기 위해 미토콘드리아-수용자 세포주로부터 내인성 mtDNA의 완전한 제거를 달성하는 것이다. 이 연구에서 우리는 분리된 미토콘드리아로 로다민 6G 전처리된 세포의 재증식을 기반으로 현탁액 성장 암세포에 적용되는 미토콘드리아 교환 프로토콜을 제시합니다. 이 방법론을 통해 우리는 전통적인 접근 방식의 한계를 극복할 수 있으므로 암 진행 및 전이에서 미토콘드리아 역할에 대한 이해를 확장하는 도구로 사용할 수 있습니다.

Introduction

에너지 대사를 재프로그래밍하는것은 1930년대 오토 바르부르크(Otto Warburg)가 처음으로 관찰한 암의 특징이다2. 호기성 조건에서 정상 세포는 포도당을 피루브산으로 전환한 다음 아세틸-coA를 생성하여 미토콘드리아 기계에 연료를 공급하고 세포 호흡을 촉진합니다. 그럼에도 불구하고 Warburg는 정상 산소 조건에서도 대부분의 암세포가 해당 과정에서 얻은 피루브산을 젖산으로 전환하여 에너지를 얻는 방법을 전환한다는 것을 입증했습니다. 이러한 대사 조절은 “바르부르크 효과”로 알려져 있으며, 일부 암세포는 호기성 과정보다 덜 효율적으로 ATP를 생성함에도 불구하고 빠른 성장과 분열에 대한 에너지 요구를 공급할 수 있습니다 3,4,5. 최근 수십 년 동안 수많은 연구가 암 진행에서 신진대사 재프로그래밍의 의미를 뒷받침했습니다. 따라서 종양 에너지학은 암에 대한 흥미로운 표적으로 간주됩니다1. 에너지 대사와 필수 전구체 공급의 중심 허브인 미토콘드리아는 현재까지 우리가 부분적으로만 이해하고 있는 이러한 세포 적응에 핵심적인 역할을 합니다.

위와 같은 맥락에서, 미토콘드리아 DNA(mtDNA) 돌연변이는 이러한 대사 재프로그래밍의 가능한 원인 중 하나로 제안되었으며, 이는 전자 수송 사슬(ETC) 성능을 손상시킬 수 있으며6 일부 암세포가 생존을 위해 당분해 대사를 향상시키는 이유를 설명할 수 있다. 실제로, mtDNA는 암세포 내에 돌연변이를 축적하여 종양의 적어도 50%에 존재한다고 보고되었다7. 예를 들어, Yuan et al.에 의해 수행된 최근 연구에서는 신장암, 결장직장암, 갑상선암에서 과돌연변이 및 절단된 mtDNA 분자의 존재를 보고했다8. 더욱이, 많은 연구들은 특정 mtDNA 돌연변이가 보다 공격적인 종양 표현형 및 암세포의 전이성 가능성의 증가와 관련이 있음을 입증하였다 9,10,11,12,13,14,15,16.

암 진행에서 미토콘드리아 게놈의 명백한 관련성에도 불구하고, 이러한 돌연변이에 대한 연구와 질병에 대한 기여는 현재 이용 가능한 실험 모델 및 기술의 한계로 인해 어려웠습니다17. 따라서 암 질환 발병 및 진행에 미토콘드리아 DNA의 실제 영향을 이해하기 위한 새로운 기술이 필요합니다. 이 연구에서 우리는 전통적인 사이브리드화 방법18,19의 주요 문제를 극복하는 분리된 미토콘드리아로 로다민 6G 전처리된 세포의 재증식을 기반으로 현탁액 성장 암세포에서 트랜스미토콘드리아 사이브리드 생성을 위한 프로토콜을 소개합니다. 이 방법론은 해당ρ0 세포주의 가용성 및 전통적인 기술에 따라 적출이 어려운 세포(즉, 비부착성 세포주)에서 미토콘드리아의 전달에 관계없이 모든 핵 기증자의 사용을 허용합니다.

Protocol

참고: 모든 배양 배지 및 완충액 조성은 표 1에 명시되어 있습니다. 사이브리드 생성 전에 기증자와 수용자 세포의 미토콘드리아 및 핵 DNA 프로파일을 모두 입력하여 세포주 간의 두 게놈에 유전적 차이가 있는지 확인해야 합니다. 본 연구에서는 상업적으로 이용 가능한 L929 세포주와 그 유래 세포주인 L929dt를 사용하였는데, 이는 본 연구실에서 자발적으로 생성되었다(자세한 내용은<s…

Representative Results

위에 제시된 프로토콜을 따른 후, 그림 1 및 그림 2의 개략도에 표시된 바와 같이 보존된 핵 배경을 갖지만 새로운 미토콘드리아 유전자형을 가진 동형질 사이브레드 세포주를 얻어야 합니다. 사이브리드에 존재하는 미토콘드리아 및 핵 DNA의 순도는 그림 3과 같이 RFLP와 그림 4와 같이 핵 DNA 유전자형 분석을 …

Discussion

오토 바르부르크(Otto Warburg)가 암세포가 미토콘드리아 호흡을 감소시키면서 신진대사를 변화시키고 “호기성 해당작용(aerobic glycolysis)”3,4을 강화한다고 보고한 이후, 암 변형과 진행에서 미토콘드리아의 역할에 대한 관심이 기하급수적으로 증가했습니다. 최근 몇 년 동안, mtDNA의 돌연변이와 미토콘드리아 기능 장애는 많은 암 유형의 특징으로 가정되었?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

이 연구는 RSA, JMB 및 AA에 대한 보조금 번호 PID2019-105128RB-I00과 PFS 및 RML에 대한 PGC2018-095795-B-I00으로 자금을 지원받았으며, 둘 다 MCIN/AEI/10.13039/501100011033 및 보조금 번호 B31_20R(RSA, JMA 및 AA) 및 E35_17R(PFS 및 RML)에서 자금을 지원하고 Gobierno de Aragón이 자금을 지원합니다. RSA의 작업은 Asociación Española Contra el Cáncer (AECC) PRDAR21487SOLE의 보조금으로 지원되었습니다. 저자는 Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza의 사용을 인정하고 싶습니다.

Materials

3500XL Genetic Analyzer  ThermoFisher Scientific 4406016
6-well plate Corning 08-772-1B
Ammonium persulfate Sigma-Aldrich A3678
AmpFlSTR Identifiler Plus PCR Amplification Kit ThermoFisher Scientific 4427368
Anode Buffer Container 3500 Series Applied Biosystems 4393927
Boric acid PanReac 131015
Bradford assay Biorad 5000002
Cathode Buffer Container 3500 Series Applied Biosystems 4408256
Cell culture flasks TPP 90076
DMEM high glucose Gibco 11965092
EDTA PanReac 131026
Ethidium Bromide Sigma-Aldrich E8751
Geneticin Gibco 10131027
Homogenizer Teflon pestle Deltalab 196102
L929 cell line ATCC CCL-1
MiniProtean Tetra4 Gel System BioRad 1658004
MOPS Sigma-Aldrich M1254
PCR primers Sigma-Aldrich Custom products
Polyacrylamide Solution 30% PanReac A3626
Polyethylene glycol Sigma-Aldrich P7181
POP-7 Applied Biosystems 4393714
Pyruvate Sigma-Aldrich P5280
QIAmp DNA Mini Kit Qiagen 51306
Rhodamine-6G Sigma-Aldrich R4127
Serum Fetal Bovine Sigma-Aldrich F7524
SspI New England Biolabs R3132
Streptomycin/penicillin PAN biotech P06-07100
Sucrose Sigma-Aldrich S3089
TEMED Sigma-Aldrich T9281
Tris PanReac P14030b
Uridine Sigma-Aldrich U3750

References

  1. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discovery. 12 (1), 31-46 (2022).
  2. Wind, F., Warburg, O. H. . The Metabolism of Tumors: Investigation from the Kaiser Wilhelm Institute for Biology. , (1930).
  3. Warburg, O. On respiratory impairment in cancer cells. Science. 124 (3215), 269-270 (1956).
  4. Warburg, O. On the origin of cancer cells. Science. 123 (3191), 309-314 (1956).
  5. Weinhouse, S. On respiratory impairment in cancer cells. Science. 124 (3215), 267-269 (1956).
  6. Brandon, M., Baldi, P., Wallace, D. C. Mitochondrial mutations in cancer. Oncogene. 25 (34), 4647-4662 (2006).
  7. Ju, Y. S., et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife. 3, 02935 (2014).
  8. Yuan, Y., et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nature Genetics. 52 (3), 342-352 (2020).
  9. Arnold, R. S., et al. metastasis in prostate cancer: Recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone. 78, 81-86 (2015).
  10. Imanishi, H., et al. Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS One. 6 (8), 23401 (2011).
  11. Lu, J., Sharma, L. K., Bai, Y. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Research. 19 (7), 802-815 (2009).
  12. Luo, Y., Ma, J., Lu, W. The significance of mitochondrial dysfunction in cancer. International Journal of Molecular Sciences. 21 (16), 5598 (2020).
  13. Marco-Brualla, J., et al. Mutations in the ND2 subunit of mitochondrial complex I are sufficient to confer increased tumorigenic and metastatic potential to cancer cells. Cancers. 11 (7), 1027 (2019).
  14. Schopf, B., et al. OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations and increased succinate oxidation. Nature Communications. 11 (1), 1487 (2020).
  15. Yuan, Y., et al. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma. BMC Cancer. 15, 346 (2015).
  16. Zielonka, J., Kalyanaraman, B. 34;ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis"–a critical commentary. Free Radicals Biology and Medicine. 45 (9), 1217-1219 (2008).
  17. Welch, D. R., Foster, C., Rigoutsos, I. Roles of mitochondrial genetics in cancer metastasis. Trends in Cancer. 8 (12), 1002-1018 (2022).
  18. Cavaliere, A., Marchet, S., Di Meo, I., Tiranti, V. An in vitro approach to study mitochondrial dysfunction: A cybrid model. Journal of Visualized Experiments. (181), e63452 (2022).
  19. King, M. P., Attardi, G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 246 (4929), 500-503 (1989).
  20. Bacman, S. R., Moraes, C. T. Transmitochondrial technology in animal cells. Methods in Cell Biology. 80, 503-524 (2007).
  21. Moraes, C. T., Dey, R., Barrientos, A. Transmitochondrial technology in animal cells. Methods in Cell Biology. 65, 397-412 (2001).
  22. Acin-Perez, R., et al. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Molecular Cell. 13 (6), 805-815 (2004).
  23. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72, 248-254 (1976).
  24. Bayona-Bafaluy, M. P., et al. Revisiting the mouse mitochondrial DNA sequence. Nucleic Acids Research. 31 (18), 5349-5355 (2003).
  25. Srinivasan, S., Guha, M., Kashina, A., Avadhani, N. G. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. Biochimica et Biophysica Acta. Bioenergetics. 1858 (8), 602-614 (2017).
  26. Bartoletti-Stella, A., et al. Mitochondrial DNA mutations in oncocytic adnexal lacrimal glands of the conjunctiva. Archives of Ophthalmology. 129 (5), 664-666 (2011).
  27. Chinnery, P. F., Samuels, D. C., Elson, J., Turnbull, D. M. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism. The Lancet. 360 (9342), 1323-1325 (2002).
  28. Copeland, W. C., Wachsman, J. T., Johnson, F. M., Penta, J. S. Mitochondrial DNA alterations in cancer. Cancer Investigation. 20 (4), 557-569 (2002).
  29. Gasparre, G., et al. Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Human Molecular Genetics. 17 (7), 986-995 (2008).
  30. Kopinski, P. K., Singh, L. N., Zhang, S., Lott, M. T., Wallace, D. C. Mitochondrial DNA variation and cancer. Nature Review Cancer. 21 (7), 431-445 (2021).
  31. Pereira, L., Soares, P., Maximo, V., Samuels, D. C. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors. BMC Cancer. 12, 53 (2012).
  32. Wallace, D. C. Mitochondria and cancer. Nature Reviews. Cancer. 12 (10), 685-698 (2012).
  33. Hopkins, J. F., et al. Mitochondrial mutations drive prostate cancer aggression. Nature Communications. 8 (1), 656 (2017).
  34. Weerts, M. J. A., Smid, M., Foekens, J. A., Sleijfer, S., Martens, J. W. M. Mitochondrial RNA expression and single nucleotide variants in association with clinical parameters in primary breast cancers. Cancers. 10 (12), 500 (2018).
  35. Jimenez-Morales, S., Perez-Amado, C. J., Langley, E., Hidalgo-Miranda, A. Overview of mitochondrial germline variants and mutations in human disease: Focus on breast cancer (Review). International Journal of Oncology. 53 (3), 923-936 (2018).
  36. Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology. 8 (10), 774-785 (2007).
  37. Perrone, A. M., et al. Potential for mitochondrial DNA sequencing in the differential diagnosis of gynaecological malignancies. International Journal of Molecular Sciences. 19 (7), 2048 (2018).
  38. Musicco, C., et al. Mitochondrial dysfunctions in type I endometrial carcinoma: Exploring their role in oncogenesis and tumor progression. International Journal of Molecular Sciences. 19 (7), 2076 (2018).
  39. Li, N., et al. Dissecting the expression landscape of mitochondrial genes in lung squamous cell carcinoma and lung adenocarcinoma. Oncology Letters. 16 (3), 3992-4000 (2018).
  40. Kim, H. R., et al. Spectrum of mitochondrial genome instability and implication of mitochondrial haplogroups in Korean patients with acute myeloid leukemia. Blood Research. 53 (3), 240-249 (2018).
  41. Tyagi, A., et al. Pattern of mitochondrial D-loop variations and their relation with mitochondrial encoded genes in pediatric acute myeloid leukemia. Mutation Research. 810, 13-18 (2018).
  42. Vidone, M., et al. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme. The International Journal of Biochemistry & Cell Biology. 63, 46-54 (2015).
  43. Chatterjee, A., Mambo, E., Sidransky, D. Mitochondrial DNA mutations in human cancer. Oncogene. 25 (34), 4663-4674 (2006).
  44. Arnold, R. S., et al. An inherited heteroplasmic mutation in mitochondrial gene COI in a patient with prostate cancer alters reactive oxygen, reactive nitrogen and proliferation. BioMed Research International. 2013, 239257 (2013).
  45. Petros, J. A., et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proceedings of the National Academy of Sciences. 102 (3), 719-724 (2005).
  46. Wallace, D. C., Fan, W., Procaccio, V. Mitochondrial energetics and therapeutics. Annual Review of Pathology. 5, 297-348 (2010).
  47. Reznik, E., et al. Mitochondrial DNA copy number variation across human cancers. eLife. 5, 10769 (2016).
  48. Soler-Agesta, R., et al. PT-112 induces mitochondrial stress and immunogenic cell death, targeting tumor cells with mitochondrial deficiencies. Cancers. 14 (16), 3851 (2022).
  49. Trounce, I., Wallace, D. C. Production of transmitochondrial mouse cell lines by cybrid rescue of rhodamine-6G pre-treated L-cells. Somatic Cell and Molecular Genetics. 22 (1), 81-85 (1996).
  50. Pastushenko, I., Blanpain, C. EMT transition states during tumor progression and metastasis. Trends in Cell Biology. 29 (3), 212-226 (2019).
  51. Pastushenko, I., et al. Identification of the tumour transition states occurring during EMT. Nature. 556 (7702), 463-468 (2018).
  52. Thiery, J. P., Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology. 7 (2), 131-142 (2006).

Play Video

Citer Cet Article
Soler-Agesta, R., Marco-Brualla, J., Fernández-Silva, P., Mozas, P., Anel, A., Moreno Loshuertos, R. Transmitochondrial Cybrid Generation Using Cancer Cell Lines. J. Vis. Exp. (193), e65186, doi:10.3791/65186 (2023).

View Video