Summary

Bioimpressão 3D de hidrogéis fototáveis para estudo da ativação de fibroblastos

Published: June 30, 2023
doi:

Summary

Este artigo descreve como bioimprimir hidrogéis fototáveis em 3D para estudar o enrijecimento da matriz extracelular e a ativação de fibroblastos.

Abstract

Os hidrogéis fotosajustáveis podem transformar-se espacial e temporalmente em resposta à exposição à luz. A incorporação desses tipos de biomateriais em plataformas de cultura celular e o desencadeamento dinâmico de mudanças, como o aumento da rigidez microambiental, permite aos pesquisadores modelar as mudanças na matriz extracelular (MEC) que ocorrem durante a progressão da doença fibrótica. Neste trabalho, é apresentado um método para bioimpressão 3D de um biomaterial hidrogel fototável capaz de duas reações sequenciais de polimerização dentro de um banho suporte de gelatina. A técnica de bioimpressão Freeform Reversible Embedding of Suspended Hydrogels (FRESH) foi adaptada ajustando-se o pH do banho de suporte para facilitar uma reação de adição de Michael. Primeiro, a biotinta contendo poli(etilenoglicol)-alfa metacrilato (PEGαMA) foi reagida fora da estequiometria com um reticulante degradável por células para formar hidrogéis moles. Esses hidrogéis moles foram posteriormente expostos ao fotoinibidor e à luz para induzir a homopolimerização dos grupos não reagidos e enrijecer o hidrogel. Este protocolo abrange síntese de hidrogel, bioimpressão 3D, fotoenrijecimento e caracterizações de desfechos para avaliar a ativação de fibroblastos em estruturas 3D. O método aqui apresentado permite aos pesquisadores bioimprimir em 3D uma variedade de materiais que sofrem reações de polimerização catalisadas por pH e pode ser implementado para projetar vários modelos de homeostase, doença e reparo tecidual.

Introduction

A bioimpressão 3D é uma tecnologia transformadora que permite aos pesquisadores depositar com precisão células e biomateriais em volumes 3D e recriar a complexa estrutura hierárquica dos tecidos biológicos. Na última década, avanços na bioimpressão 3D criaram tecidos cardíacos humanos batidos1, modelos funcionais de tecidos renais2, modelos de trocas gasosas dentro do pulmão3 e modelos tumorais para pesquisa de câncer4. A invenção de técnicas de bioimpressão 3D incorporadas, como a bioimpressão Freeform Reversible Embedding of Suspended Hydrogel (FRESH), tornou possível reproduzir estruturas complexas de tecidos moles, como vasos sanguíneos pulmonares5 e até coração humano6 em 3D. A bioimpressão 3D FRESH facilita a impressão camada por camada de biotintas macias e de baixa viscosidade através da extrusão em um banho de suporte de desbaste de cisalhamento. O banho de suporte consiste em um material como micropartículas de gelatina bem embaladas que atua como um plástico Bingham e mantém a forma e a estrutura pretendidas da biotinta após a impressão. Uma vez que a construção impressa tenha se solidificado, o banho de suporte pode então ser dissolvido aumentando a temperatura para 37 °C7.

Um artigo de revisão recente resumiu os materiais que foram bioimpressos em 3D em várias publicações usando a técnica FRESH. Esses materiais de origem natural variam desde colágeno tipo I até ácido hialurônico metacrilado e representam vários mecanismos diferentes de gelificação7. A maioria das pesquisas realizadas com essa técnica de bioimpressão 3D emprega biomateriais estáticos que não se alteram em resposta a estímulos externos. Biomateriais dinâmicos de hidrogel fotosajustáveis têm sido utilizados por nosso laboratório e outros 8,9,10,11,12 para modelar uma variedade de doenças fibróticas. Ao contrário dos biomateriais estáticos, as biotintas fotosajustáveis permitem que um modelo amolecido com menor valor de módulo de elasticidade seja criado e posteriormente enrijecido para explorar respostas celulares a aumentos no enrijecimento microambiental.

As doenças fibróticas caracterizam-se pelo aumento da produção de matriz extracelular, que pode causar cicatrizes e enrijecimento13. O enrijecimento tecidual pode iniciar novas lesões e destruição do tecido impactado, causando danos permanentes aos órgãos e até a morte; As desordens fibróticas são responsáveis por um terço da mortalidade mundial. Os fibroblastos produzem excesso e matriz extracelular aberrante nesse estadopatológico 14,15. O aumento da proliferação fibroblástica e a deposição de matriz extracelular enrijecem ainda mais o tecido e ativam uma alça de feedback positivo profibrótico16,17,18,19. O estudo da ativação de fibroblastos é vital para a compreensão das doenças fibróticas. Aqui apresentamos a hipertensão arterial pulmonar (HAP) humana como um exemplo de um distúrbio fibrótico no qual é importante imitar a geometria 3D do vaso sanguíneo usando bioimpressão 3D e introduzir as capacidades de enrijecimento dinâmico dos hidrogéis fotosajustáveis. A HAP é uma condição na qual a pressão nas artérias pulmonares principais ultrapassa os níveis normais e aplica tensão no coração, aumentando a ativação do fibroblasto adventício da artéria pulmonar humana (FAAPH) e enrijece os tecidos dos vasos sanguíneos16,17,18,19. Uma formulação de biotinta de poli(etilenoglicol)-alfa metacrilato (PEGαMA) fototunable permite o enrijecimento temporal em construtos e ajuda a modelar tanto o tecido saudável quanto a progressão da doença 5,8,9,10. A exploração desta característica única permite a quantificação da ativação e proliferação de HPAAF em resposta ao enrijecimento microambiental em 3D e pode fornecer informações valiosas sobre os mecanismos celulares envolvidos nesta doença. O protocolo aqui descrito permitirá aos pesquisadores criar modelos 3D que recapitulam mudanças no microambiente extracelular durante a progressão da doença ou reparo tecidual e estudar a ativação de fibroblastos.

Protocol

1. Síntese e caracterização de PEGαMA NOTA: A síntese de poli(etilenoglicol)-alfametacrilato (PEGαMA) foi adaptada de Hewawasam e col. e realizada em condições livres de umidade9. Pese os reagentes.NOTA: Por exemplo, pesar 5 g de PEG-hidroxila de 8 braços de 10 kg/mol (PEG-OH) e 0,38 g de hidreto de sódio (NaH) (ver Tabela de Materiais). Adicionar uma barra de agitação a 250 ml de balão de S…

Representative Results

Este protocolo descreve como bioimprimir hidrogéis fototáveis em 3D dentro de um banho de suporte para criar construções capazes de enrijecimento dinâmico e temporal para estudar a ativação de fibroblastos em geometrias que mimetizam tecidos humanos. Primeiro, o protocolo explicou como sintetizar PEGαMA, a espinha dorsal desse sistema polimérico fotosintonizável. Medidas de espectroscopia de ressonância magnética nuclear (RMN) mostraram sucesso na funcionalização do PEGαMA em 96,5% (Fi…

Discussion

Reações de polimerização em duplo estágio em resposta à exposição controlada à luz podem enrijecer biomateriais com controle espacial e temporal. Vários estudos têm utilizado essa técnica para avaliar interações célula-matriz em diversas plataformas5,8,9,10,11,21,22,23.</…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Os autores gostariam de agradecer ao Dr. Adam Feinberg (Carnegie Mellon University) e àqueles que organizaram o 3D Bioprinting Open-Source Workshop. Esses indivíduos possibilitaram o aprendizado das técnicas de bioimpressão FRESH e a construção da bioimpressora 3D utilizada para esses estudos. Além disso, os autores gostariam de agradecer Biorender.com, que foi usado para produzir figuras neste manuscrito. Este trabalho foi apoiado por vários grupos ou fontes de financiamento, incluindo a Rose Community Foundation (DDH e CMM), um Colorado Pulmonary Vascular Disease Research Award (DDH e CMM), a National Science Foundation sob Award 1941401 (CMM), o Departamento do Exército sob o Prêmio W81XWH-20-1-0037 (CMM), o Instituto Nacional do Câncer do NIH sob o Prêmio R21 CA252172 (CMM), o Ludeman Family Center for Women’s Health Research da University of Colorado Anschutz Medical Campus (DDH e CMM), o National Heart, Lung, and Blood Institute dos Institutos Nacionais de Saúde sob os prêmios R01 HL080396 (CMM), R01 HL153096 (CMM), F31 HL151122 (DDH) e T32 HL072738 (DDH e AT).

Materials

AccuMax Radiometer/Photometer Kit Spectronics Corporation XPR-3000 To measure light intensity, used for photostiffening
Acetic Acid  Fisher Scientific BP2401-500 Used during PEGaMA synthesis
Acetone Fisher Scientific A184 Used with the cryosections
ActinGreen 488 ReadyProbes Fisher Scientific R37110 Used for staining
Aluminum Foil Reynolds F28028
Anhydrous Tetrahydrofuran (THF) Sigma-Aldrich 401757-1L Used during PEGaMA synthesis
Argon Compressed Gas Airgas AR R300 Used during PEGaMA synthesis
8 Arm Poly(ethylene glycol)-hydroxyl (PEG-OH) JenKem Technology 8ARM-PEG-10K Used during PEGaMA synthesis
365 nm Bandpass Filter Edmund Optics 65-191 Used for photostiffening
Bovine Serum Albumin (BSA) Fisher Scientific BP9700-100 Used during staining process
Buchner Funnel Quark Glass QFN-8-14 Used during PEGaMA synthesis
Calcein AM Invitrogen 65-0853-39 Used during staining process
Celite 545 (Filtration Aid) EMD Millipore CX0574-1 Used during PEGaMA synthesis
Charged Microscope Slides Globe Scientific 1358W
Chloroform-d Sigma-Aldrich 151823-10X0.75ML Used to characterize PEGaMA
Click-iT Plus EdU Cell Proliferation Kit Invitrogen C10637 Used for staining
50 mL Conical Tubes CELLTREAT 667050B
Cryogenic Safety Kit Cole-Parmer EW-25000-85
Cryostat Leica CM 1850-3-1
Dialysis Tubing Repligen 132105
4’,6-Diamidino-2-Phylindole (DAPI) Sigma-Aldrich D9542-1MG Used for staining
Diethyl Ether Fisher Scientific E1384 Used during PEGaMA synthesis
1,4-Dithiothreitol (DTT)  Sigma-Aldrich 10197777001 Bioink component
Dulbecco's Modified Eagle's Medium (DMEM) Cytiva SH30271.FS
Ethyl 2-(Bromomethyl)Acrylate (EBrMA) Ambeed Inc. A918087-25g Used during PEGaMA synthesis
Filter Paper Whatman 1001-090 Used during PEGaMA synthesis
Freezone 2.5L Freeze Dry System Labconco LA-2.5LR Lyophilizer
Fusion 360 Autodesk N/A Software download
2.5 mL Gastight Syringe Hamilton 81420 Used for bioprinting
15 Gauge 1.5" IT Series Tip Jensen Global JG15-1.5X Used for bioprinting
30 Gauge 0.5" HP Series Tip Jensen Global JG30-0.5HPX Used for bioprinting
Goat Anti-Mouse Alexa Fluor 555 Antibody Fisher Scientific A21422 Used for staining
Glycine Fisher Scientific C2H5NO2 Used during staining process
Hemocytometer Fisher Scientific 1461
Hoechst Thermo Scientific 62249 Used during staining process
Human Pulmonary Artery Adventitial Fibroblasts (HPAAFs) AcceGen ABC-TC3773  From a 2-year-old male patient
Hydrochloric Acid (HCl) Fisher Scientific A144-500 Used to pH adjust solutions
ImageJ National Institutes of Health (NIH) N/A Free software download
ImmEdge® Pen Vector Laboratories H-4000 Used during staining process
Incubator VWR VWR51014991
LifeSupport Gelatin Microparticle Slurry (Gelatin Slurry) Advanced Biomatrix 5244-10GM Used for bioprinting
Light Microscope Olympus CKX53 Inverted light microscope
Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate (LAP) Sigma-Aldrich 900889-5G Photoinitiator used for photostiffening
Liquid Nitrogen N/A N/A
LulzBot Mini 2  LulzBot N/A Bioprinter adapted
Methacryloxyethyl Thiocarbamoyl Rhodamine B  Polysciences Inc. 669775-30-8
2-Methylbutane Sigma-Aldrich M32631-4L
Microman Capillary Pistons CP1000 VWR 76178-166 Positive displacement pipette tips
MMP2 Degradable Crosslinker (KCGGPQGIWGQGCK) GL Biochem N/A Bioink component
Mouse Anti-Human αSMA Monoclonal Antibody Fisher Scientific MA5-11547 Used for staining
OmniCure Series 2000  Lumen Dynamics S2000-XLA UV light source used for photostiffening
Paraformaldehyde (PFA)  Electron Microscopy Sciences 15710 Used to fix samples
pH Meter Mettler Toledo  FP20 
pH Strips Cytiva 10362010
Phosphate Buffered Saline (PBS) Hyclone Laboratories, Inc. Cytiva SH30256.FS
Pipette Set Fisher Scientific 14-388-100
10 µL Pipette Tips USA Scientific 1120-3710
20 µL Pipette Tips USA Scientific 1183-1510
200 µL Pipette Tips USA Scientific 1111-0700
1000 µL Pipette Tips USA Scientific 1111-2721
Poly(Ethylene Glycol)-Alpha Methacrylate (PEGαMA) N/A N/A Refer to manuscript for synthesis steps
Poly(Ethylene Oxide) (PEO) Sigma-Aldrich 372773-250G Bioink component
Positive Displacement Pipette Fisher Scientific FD10004G 100-1000 µL
Potassium Hydroxide (KOH) Sigma-Aldrich 221473-500G Used to pH adjust solutions
ProLong Gold Antifade Reagent Invitrogen P36930 Used during staining process
Pronterface All3DP N/A Software download
Propidium Iodide Sigma-Aldrich P4864-10ML Used for staining
RGD Peptide (CGRGDS) GL Biochem N/A Bioink component
Rocker VWR 10127-876
Rotary Evaporator  Thomas Scientific 11100V2022 Used during PEGaMA synthesis
Rubber Band Staples 808659
Schlenk Flask  Kemtech America F902450 Used during PEGaMA synthesis
Slic3r Slic3r N/A Software download
Smooth Muscle Cell Growth Medium-2 (SmGM-2) BulletKit Lonza CC-3182 Kit contains CC-3181 and CC-4149 components
Sodium Hydride  Sigma-Aldrich 223441-50G Used during PEGaMA synthesis
Sorvall ST 40R Centrifuge Fisher Scientific 75-004-525
Stir Bar VWR 58948-091
Syringe Filter VWR 28145-483 Used to sterile filter solutions
T-75 Tissue-Cultured Treated Flask VWR 82050-856 Used for cell culture work
Tissue-Tek Cyromold Sakura 4557
Tissue-Tek O.C.T Compound (OCT) Sakura 4583
Tris(2-Carboxyethyl) Phosphine (TCEP) Sigma-Aldrich C4706-2G
Triton X-100 Fisher Bioreagents C34H622O11 Used during staining process
Trypan Blue Sigma-Aldrich T8154-20ML Used for cell culture work
0.05% Trypsin-EDTA Gibco 25-300-062 Used for cell culture work
Tween 20 Fisher Bioreagents C58H114O26 Used during staining process
Upright Microscope Olympus BX63F Fluorescent microscope capabilities
Water Bath PolyScience WBE20A11B
24-Well Tissue Culture Plates Corning 3527

References

  1. Ahrens, J. H., et al. Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks. Advanced Materials. 34 (26), e2200217 (2022).
  2. Lin, N. Y. C., et al. Renal reabsorption in 3D vascularized proximal tubule models. Proceedings of the National Academy of Sciences of the United States of America. 116 (12), 5399-5404 (2019).
  3. Grigoryan, B., et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 364 (6439), 458-464 (2019).
  4. Kang, Y., Datta, P., Shanmughapriya, S., Ozbolat, I. T. 3D bioprinting of tumor models for cancer research. ACS Applied Biomaterials. 3 (9), 5552-5573 (2020).
  5. Davis-Hall, D., Thomas, E., Pena, B., Magin, C. M. 3D-bioprinted, phototunable hydrogel models for studying adventitial fibroblast activation in pulmonary arterial hypertension. Biofabrication. 15 (1), (2022).
  6. Mirdamadi, E., Tashman, J. W., Shiwarski, D. J., Palchesko, R. N., Feinberg, A. W. FRESH 3D bioprinting of a full-size model of the human heart. ACS Biomaterials Science & Engineering. 6 (11), 6453-6459 (2020).
  7. Shiwarski, D. J., Hudson, A. R., Tashman, J. W., Feinberg, A. W. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioengineering. 5 (1), 010904 (2021).
  8. Petrou, C. L., et al. Clickable decellularized extracellular matrix as a new tool for building hybrid hydrogels to model chronic fibrotic diseases in vitro. Journal of Materials Chemistry B. 8 (31), 6814-6826 (2020).
  9. Hewawasam, R. S., Blomberg, R., Serbedzija, P., Magin, C. M. Chemical modification of human decellularized extracellular matrix for incorporation into phototunable hybrid hydrogel models of tissue fibrosis. ACS Applied Materials & Interfaces. 15 (12), 15071-15083 (2023).
  10. Saleh, K. S., et al. Engineering hybrid hydrogels comprised healthy or diseased decellularized extracellular matrix to study pulmonary fibrosis. Cellular and Molecular Bioengineering. 15 (5), 505-519 (2022).
  11. Guvendiren, M., Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nature Communications. 3, 792 (2012).
  12. Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., Anseth, K. S. Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition English. 56 (40), 12132-12136 (2017).
  13. Wynn, T. A., Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Medicine. 18 (7), 1028-1040 (2012).
  14. Huertas, A., Tu, L., Humbert, M., Guignabert, C. Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator. Cardiovascular Research. 116 (5), 885-893 (2020).
  15. Kendall, R. T., Feghali-Bostwick, C. A. Fibroblasts in fibrosis: novel roles and mediators. Frontiers in Pharmacology. 5, 123 (2014).
  16. Parker, M. W., et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. The Journal of Clinical Investigation. 124 (4), 1622-1635 (2014).
  17. Habiel, D. M., Hogaboam, C. Heterogeneity in fibroblast proliferation and survival in idiopathic pulmonary fibrosis. Frontiers in Pharmacology. 5, 2 (2014).
  18. Hu, C. J., Zhang, H., Laux, A., Pullamsetti, S. S., Stenmark, K. R. Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. The Journal of Physiology. 597 (4), 1103-1119 (2019).
  19. Li, M., et al. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. The Journal of Immunology. 187 (5), 2711-2722 (2011).
  20. Hinton, T. J., et al. Three-dimensional printing of complex biological structures by freeform-reversible embedding of suspended hydrogels. Science Advances. 1 (9), e1500758 (2015).
  21. Brown, T. E., et al. Secondary photocrosslinking of click hydrogels to probe myoblast mechanotransduction in three dimensions. Journal of the American Chemical Society. 140 (37), 11585-11588 (2018).
  22. Ondeck, M. G., et al. Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling. Proceedings of the National Academy of Sciences of the United States of America. 116 (9), 3502-3507 (2019).
  23. Caliari, S. R., et al. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Scientific Reports. 6, 21387 (2016).
  24. Liu, F., et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. Journal of Cell Biology. 190 (4), 693-706 (2010).
  25. Tschumperlin, D. J., Ligresti, G., Hilscher, M. B., Shah, V. H. Mechanosensing and fibrosis. The Journal of Clinical Investigation. 128 (1), 74-84 (2018).
  26. Chelladurai, P., Seeger, W., Pullamsetti, S. S. Matrix metalloproteinases and their inhibitors in pulmonary hypertension. European Respiratory Journal. 40 (3), 766-782 (2012).
  27. Caracena, T., et al. Alveolar epithelial cells and microenvironmental stiffness synergistically drive fibroblast activation in three-dimensional hydrogel lung models. Biomaterials Science. 10 (24), 7133-7148 (2022).
  28. Ruskowitz, E. R., DeForest, C. A. Proteome-wide analysis of cellular response to ultraviolet light for biomaterial synthesis and modification. ACS Biomaterials Science & Engineering. 5 (5), 2111-2116 (2019).
  29. Kruse, C. R., et al. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair and Regeneration. 25 (2), 260-269 (2017).
  30. Filippi, M., et al. Perfusable biohybrid designs for bioprinted skeletal muscle tissue. Advanced Healthcare Materials. , e1500758 (2023).
  31. Matthiesen, I., et al. Astrocyte 3D culture and bioprinting using peptide-functionalized hyaluronan hydrogels. Science and Technology of Advanced Materials. 24 (1), 2165871 (2023).
  32. Xu, L., et al. Bioprinting a skin patch with dual-crosslinked gelatin (GelMA) and silk fibroin (SilMA): An approach to accelerating cutaneous wound healing. Materials Today Bio. 18, 100550 (2023).
  33. Bliley, J. M., Shiwarski, D. J., Feinberg, A. W. 3D-bioprinted human tissue and the path toward clinical translation. Science Translational Medicine. 14 (666), eabo7047 (2022).
check_url/fr/65639?article_type=t

Play Video

Citer Cet Article
Tanneberger, A. E., Blair, L., Davis-Hall, D., Magin, C. M. 3D Bioprinting Phototunable Hydrogels to Study Fibroblast Activation. J. Vis. Exp. (196), e65639, doi:10.3791/65639 (2023).

View Video