Summary

小鼠肺静脉心肌套的显微解剖和免疫荧光染色

Published: November 21, 2023
doi:

Summary

该方案展示了小鼠肺静脉的显微镜引导分离和免疫荧光染色。我们制备包含左心房、肺静脉和相应肺的组织样本,并对它们进行心脏肌钙蛋白 T 和连接蛋白 43 染色。

Abstract

肺静脉 (PV) 是房性心律失常中异位搏动的主要来源,在心房颤动 (AF) 的发生和进展中起着至关重要的作用。PV 包含由心肌细胞组成的心肌套管 (MS)。多发性硬化症与心房颤动的发生和维持有关,因为它们保留了与心脏工作心肌的相似性,包括产生异位电脉冲的能力。啮齿动物被广泛使用,并且可能代表研究肺静脉心肌的优秀动物模型,因为心肌细胞广泛存在于血管壁上。然而,由于器官体积小且解剖结构复杂,小鼠 PV 的精确显微解剖和制备具有挑战性。

我们展示了一种显微镜引导的显微解剖方案,用于将小鼠左心房 (LA) 与 PV 一起分离。 使用心脏肌钙蛋白-T (cTNT) 和连接蛋白 43 (Cx43) 抗体进行免疫荧光染色以全长观察 LA 和 PV。10 倍和 40 倍放大倍率的成像提供了 PV 结构的全面视图以及对心肌结构的详细见解,特别是突出了 MS 中连接蛋白 43 的存在。

Introduction

心房颤动 (AF) 是最常见的持续性心律失常1。心房颤动的患病率进一步增加,预计 2060 年欧洲将有 ~1790 万患者1。心房颤动在临床上非常重要,因为它是发生心肌梗死、心力衰竭或卒中的重要危险因素,可导致巨大的个人、社会和社会经济负担1。尽管 AF 已为人所知数十年,但 AF 的病理生理学仍未完全了解2

早在 1990 年代后期,研究表明肺静脉 (PV) 在启动和维持 AF 方面具有巨大影响,因为它们是触发 AF 的异位搏动的主要来源3。已经证明PV在结构上与其他血管不同。虽然典型的血管含有平滑肌细胞,但 PV 的被膜介质也含有心肌细胞4。在啮齿动物中,这种心脏肌肉组织普遍存在于整个 PV 中,包括肺内和肺外部分,以及孔口区域5。在人类中,PV 还含有心肌细胞,可以在左心房 (LA) 心肌的延伸部分(所谓的心肌套管 (MS)6,7 内观察到。

MS 与心房心肌8 具有形态相似性。心房和 PV 心肌细胞的形状和大小彼此之间没有显着差异,并显示出可比的电生理特性8。PV 内的电生理记录证实了 MS 的电活动,血管造影成像显示收缩与心跳同步 9,10

间隙连接是由六个连接蛋白亚基组成的成孔蛋白复合物,它们允许离子和小分子通过11。间隙连接存在于细胞间对置中,使相邻的心肌细胞互连,并使心肌细胞之间的细胞间电偶联成为可能 12,13。几种连接蛋白亚型在心脏中表达,连接蛋白 43 (Cx43) 是在心脏14 的所有区域表达的最常见的亚型。先前的研究为 Cx43 在 PV 的心肌细胞中的表达提供了证据15,16

由于其脆弱的结构,在完整的 PV 中研究 MS 仍然具有挑战性,尤其是在小动物模型中。在这里,我们演示了如何使用显微镜引导的显微切割来识别和分离小鼠的 PV 以及 LA 和肺叶。此外,我们还演示了 PV 的免疫荧光 (IF) 染色,以可视化 PV 内的心肌细胞及其相互连接。

Protocol

动物护理和所有实验程序均按照慕尼黑路德维希-马克西米利安大学动物护理和伦理委员会的指南进行,所有使用小鼠的程序均获得 Regierung von Oberbayern (ROB 55.2-2532) 的批准。Vet_02-20-215,ROB 55.2-2532。Vet_02-18-46,ROB 55.2-2532。Vet_02-19-86,ROB 55.2-2532。Vet_02-21-178,ROB 55.2-2532。Vet_02-22-170)。C57BL6/N小鼠是商业化获得的。 1. 准备工作 通过在 500 mL 锥形瓶中混合 3 mg …

Representative Results

我们对 10 只 12-16 周龄的小鼠进行了 PV 的显微解剖、染色和成像。按照该方案,我们成功地在所有实验小鼠中将PV与LA一起显微解剖,并获得了8只小鼠PV的全面视图。以 10 倍放大倍率拍摄概览图像,以识别 LA-PV 交界处的 PV 孔口 (PVO) 区域、肺外 PV (PVex)(肺门和 LA-PV 交界处之间的 PV)和肺内 PV (PVin)(被肺组织包围的 PV)(图 2)。上述区域的放大图?…

Discussion

通过该协议,我们分享了一种区分和分离小鼠心脏PV并对其进行免疫荧光染色的方法。摘取器官后,将心肺在灭菌蔗糖溶液中脱水,然后在显微镜引导下将心室与心房和肺叶分离。之后,准备心脏底座可视化 PV,然后将它们从肺门处的肺部切下。随后使用冷冻技术进行免疫荧光染色,将组织包埋在 O.C.T. 化合物中,用冷冻组切割,然后对 cTNT 和 Cx43 进行免疫荧光染色。

分离 PV …

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了德国心血管研究中心(DZHK;81X3600221到H.V.,81X2600255到S.C.),中国国家留学基金委员会(CSC201808130158到R.X.),德国研究基金会(DFG;血管医学临床科学家计划 (PRIME),MA 2186/14-1 至 PT)和科罗纳基金会(S199/10079/2019 至 SC)。

Materials

Adhesion slides Epredia 10149870
AF568-secondary antibody Invitrogen A11036 Host: Goat, Reactivity: Rabbit
Agarose Biozym LE 840104
Alexa Fluor 488-secondary antibody Cell Signaling Technology 4408S Host: Goat, Reactivity: Mouse
Anti-Connexin 43 /GJA1 antibody Abcam ab11370 Polyclonal Antibody, Clone: GJA1, Host: Rabbit 
Anti-cTNT antibody Invitrogen MA5-12960 Monoclonal Antibody, Clone: 13-11, Host: Mouse
Bovine serum albumin Sigma-Aldrich A2153
Brush Lukas  5486 size 6
Cover slips Epredia 24 mm x 50 mm
Cryotome Cryo Star NX70 Epredia  Settings: Specimen temperature: -18 °C, Blade Temperature: -25 °C
DFC365FX camera Leica 
DM6 B fluorescence microscope Leica 
Dry ice
Dubecco's phosphate-buffered saline (DPBS) 1x conc. Gibco 14040133 500 mL
Dumont #5FS Forceps F.S.T. 91150-20 2 pieces needed
Fine Scissors F.S.T. 14090-09
Fluorescence mounting medium DAKO S3023
Graefe Forceps F.S.T. 11052-10
Hoechst 33342 Invitrogen H3570 Cell nuclei counterstaining
ImageJ FIJI analysis and processing software
LAS X Leica  Imaging software for Leica DM6 B
Microtome blades S35 Feather 207500000
Microwave
Normal goat serum Sigma-Aldrich S26-M
O.C.T. compound Tissue-Tek 4583
Paraformaldehyde 16% Pierce 28908 methanol-free
Pasteur pipettes VWR 612-1681
Petri dish TPP 93100 100 mm diameter
Rocker 3D digital IKA Schüttler 00040010000
Slide staining jars EasyDip M900-12
Specimen Molds Tissue-Tek Cryomold 4557 25 mm x 20 mm x 5 mm
StainTray M920 staining system StainTray 631-1923 Staining system for 20 slides
Sterican Needle Braun 4657705 G 27 – used for injection (step 2) and pinning (step 3 and 4) in the protocol
Student Vannas Spring Scissors F.S.T. 91500-09
Super PAP Pen Liquid Blocker Super PAP Pen N71310-N
Syringes Braun 4606108V 10 mL
Tris base Roche TRIS-RO component for 1x Tris-Buffered Saline (TBS)
Triton X-100 Sigma-Aldrich T8787
Tween 20 Sigma-Aldrich P2287

References

  1. Lippi, G., Sanchis-Gomar, F., Cervellin, G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. International Journal of Stroke. 16 (2), 217-221 (2021).
  2. Wijesurendra, R. S., Casadei, B. Mechanisms of atrial fibrillation. Heart. 105 (24), 1860-1867 (2019).
  3. Haïssaguerre, M., et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. The New England Journal of Medicine. 339 (10), 659-666 (1998).
  4. Mueller-Hoecker, J., et al. Of rodents and humans: a light microscopic and ultrastructural study on cardiomyocytes in pulmonary veins. International Journal of Medical Sciences. 5 (3), 152-158 (2008).
  5. Kramer, A. W., Marks, L. S. The occurrence of cardiac muscle in the pulmonary veins of Rodenita. Journal of Morphology. 117 (2), 135-149 (1965).
  6. Nathan, H., Eliakim, M. The junction between the left atrium and the pulmonary veins. Circulation. 34 (3), 412-422 (1966).
  7. Nathan, H., Gloobe, H. Myocardial atrio-venous junctions and extensions (sleeves) over the pulmonary and caval veins: Anatomical observations in various mammals. Thorax. 25 (3), 317-324 (1970).
  8. Bond, R. C., Choisy, S. C., Bryant, S. M., Hancox, J. C., James, A. F. Ion currents, action potentials, and noradrenergic responses in rat pulmonary vein and left atrial cardiomyocytes. Physiological Reports. 8 (9), 14432 (2020).
  9. Thiagalingam, A., et al. Pulmonary vein contraction: Characterization of dynamic changes in pulmonary vein morphology using multiphase multislice computed tomography scanning. Heart Rhythm. 5 (12), 1645-1650 (2008).
  10. Spach, M. S., Barr, R. C., Jewett, P. H. Spread of excitation from the atrium into thoracic veins in human beings and dogs. The American Journal of Cardiology. 30 (8), 844-854 (1972).
  11. Scott McNutt, N., Weinstein, R. S. Membrane ultrastructure at mammalian intercellular junctions. Progress in Biophysics and Molecular Biology. 26, 45-101 (1973).
  12. Barr, L., Dewey, M. M., Berger, W. Propagation of action potentials and the structure of the nexus in cardiac muscle. Journal of General Physiology. 48 (5), 797-823 (1965).
  13. Kawamura, K., Konishi, T. Ultrastructure of the cell junction of heart muscle with special reference to its functional significance in excitation conduction and to the concept of "disease of intercalated disc&#34. Japanese Circulation Journal. 31 (11), 1533-1543 (1967).
  14. Van Kempen, M. J., Fromaget, C., Gros, D., Moorman, A. F., Lamers, W. H. Spatial distribution of connexin43, the major cardiac gap junction protein, in the developing and adult rat heart. Circulation Research. 68 (6), 1638-1651 (1991).
  15. Verheule, S. Tissue structure and connexin expression of canine pulmonary veins. Cardiovascular Research. 55 (4), 727-738 (2002).
  16. Xiao, Y., et al. Expression of connexin 43, ion channels and Ca2+-handling proteins in rat pulmonary vein cardiomyocytes. Experimental and Therapeutic Medicine. 12 (5), 3233-3241 (2016).
  17. Xia, R., et al. Whole-mount immunofluorescence staining, confocal imaging and 3D reconstruction of the sinoatrial and atrioventricular node in the mouse. Journal of Visualized Experiments. (166), (2020).
  18. Tomsits, P., et al. Medetomidine/midazolam/fentanyl narcosis alters cardiac autonomic tone leading to conduction disorders and arrhythmias in mice. Lab Animal. 52 (4), 85-92 (2023).
  19. Xia, R., et al. Isolation and culture of resident cardiac macrophages from the murine sinoatrial and atrioventricular node. Journal of Visualized Experiments. (171), (2021).
  20. Bredeloux, P., Pasqualin, C., Bordy, R., Maupoil, V., Findlay, I. Automatic activity arising in cardiac muscle sleeves of the pulmonary vein. Biomolecules. 12 (1), 23 (2021).
  21. Chen, P. S., et al. The mechanisms of atrial fibrillation. Journal of Cardiovascular Electrophysiology. 17, S2-S7 (2006).
  22. Thibault, S., Ton, A. -. T., Huynh, F., Fiset, C. Connexin lateralization contributes to male susceptibility to atrial fibrillation. International Journal of Molecular Sciences. 23 (18), 10696 (2022).
check_url/fr/65836?article_type=t&slug=microdissection-immunofluorescence-staining-myocardial-sleeves-murine

Play Video

Citer Cet Article
Villgrater, H. E., Xia, R., Sharma Chivukula, A., Tomsits, P., Clauss, S. Microdissection and Immunofluorescence Staining of Myocardial Sleeves in Murine Pulmonary Veins. J. Vis. Exp. (201), e65836, doi:10.3791/65836 (2023).

View Video