Summary

Construction and Application of Cerebral Functional Region-Based Cerebral Blood Flow Atlas Using Magnetic Resonance Imaging-Arterial Spin Labeling

Published: May 31, 2024
doi:

Summary

This study integrated magnetic resonance imaging- arterial spin labeling images to derive cerebral blood flow (CBF) atlas for cerebral functional regions. Comparing typical healthy and chronic cerebral ischemia CBF atlases revealed significant differences in regional CBF distributions, enabling rapid, noninvasive assessments of functional CBF to assist in diagnosis and evaluate therapeutics.

Abstract

Cerebral conditions often require precise diagnosis and monitoring, necessitating advanced imaging techniques. Current modalities may not adequately detect early signs of reversible tissue damage, underlining the need for innovative diagnostic tools that can quantify changes in cerebral blood flow (CBF) with high specificity and sensitivity. This study integrates three-dimensional arterial spin labeling (3D-ASL) with structural MRI to develop comprehensive CBF atlases that cover all main functional regions of the brain. This innovative magnetic resonance imaging- arterial spin labeling (MRI-ASL) methodology provides a rapid and noninvasive means of quantifying region-specific CBF, offering a detailed view of CBF levels across different functional regions.The comparison between chronic cerebral ischemia (CCI) patients and healthy subjects revealed significantly diminished CBF across the cerebral functional regions in the constructed CBF atlases for the former. This approach not only allows for the efficient identification of CCI by analyzing concurrent decreases in CBF across critical areas relative to healthy distributions but also enables the tracking of treatment responses and rehabilitation progress through longitudinal CBF atlases.The CBF atlas developed using the MRI-ASL technique represents a novel advancement in the field of cerebral diagnostics and patient care. By comparing regional CBF levels against normative standards, this method enhances diagnostic capabilities, enabling clinicians to provide personalized care to patients with cerebral conditions.

Introduction

In the realm of neuroimaging, the quest for precise, noninvasive tools to assess cerebral function and pathology remains paramount. Among these, cerebral blood flow (CBF) stands as a vital indicator, reflecting the metabolic demands and health status of brain tissue1. Traditional approaches often entail empirical assessments, relying heavily on the expertise of clinicians to interpret images and discern pathological changes2. However, advancements in magnetic resonance imaging (MRI) techniques, particularly arterial spin labeling (ASL)3, offer a promising avenue for quantifying CBF with greater accuracy and objectivity4,5.

This study presents a pioneering methodology that integrates three-dimensional ASL (3D-ASL) with structural MRI to construct a comprehensive CBF atlas across cerebral functional regions6. By leveraging this novel approach, clinicians can not only obtain a global perspective of CBF but also delve into specific functional areas, allowing for a nuanced understanding of cerebral perfusion patterns7,8. This improvement in resolution is a direct result of technological progress in imaging equipment rather than the use of interpolated voxels. It is worth noting that the majority of mainstream MRI devices available on the market today typically offer imaging precision better than 1.5 mm9. These advancements in imaging technology have paved the way for more detailed and accurate CBF assessments. This represents a paradigm shift from conventional imaging, which often lacks the resolution to detect subtle changes in CBF associated with early-stage pathologies10.

The genesis of this methodology lies in the imperative to address the diagnostic challenges posed by cerebral conditions, including chronic cerebral ischemia (CCI) and other neurological disorders11,12. These conditions necessitate precise and timely assessments to guide therapeutic interventions effectively13,14. By comparing CBF atlases between healthy individuals and patients with CCI, this study unveils significant disparities in regional CBF distributions, offering insights into disease pathology and potential treatment avenues.

The utility of this MRI-ASL approach extends beyond diagnosis, encompassing therapeutic evaluation and monitoring of disease progression15. Longitudinal CBF atlases hold promise in tracking treatment responses and rehabilitation outcomes, providing clinicians with invaluable tools for personalized patient management. Moreover, the ability to discern subtle CBF changes may serve as an early biomarker for impending tissue abnormalities, enabling proactive interventions to mitigate neurological damage before it becomes irreversible16.

While this methodology represents an advanced tool, several avenues for refinement and expansion merit consideration. Standardizing scanning protocols, CBF normalization techniques, and constructing multi-subject healthy CBF atlases are crucial steps toward enhancing diagnostic accuracy and clinical utility. Collaborative efforts across diverse cerebral pathologies are essential to validate and refine this approach for widespread clinical adoption.

This study introduces a novel approach whereby MRI-derived CBF atlases offer clinicians deep insights into cerebral function and pathology. By bridging the gap between imaging group and clinical interpretation, this methodology has the potential to revolutionize the diagnosis and management of a myriad of neurological conditions, ushering in a future of precision medicine tailored to the unique needs of each patient.

Protocol

This study was approved by the Institutional Review Board of Beijing Dongzhimen Hospital, Beijing, China. An MRI scanner was used with pulsed ASL (PASL) sequence based on turbo gradient spin echo (TGSE) for 3D arterial spin labeling (3D-ASL) with the following parameters: TR 4000 ms, TE 25 ms, bolus duration 700 ms, inversion time 1990 ms. The software tools used in this research are listed in the Table of Materials. 1. Data collection and preparation <p cla…

Representative Results

This investigation utilizes actual patient data acquired using a 1.5 T MRI scanner to validate the cerebral blood flow (CBF) quantification and atlas construction methodology. The preprocessing steps included FLAIR structural images (Figure 1), CBF images (Figure 2), and triplanar fused images (Figure 3 and Figure 4). Cerebral functional regions were segmented from FLAIR scan…

Discussion

The key steps (sections 3 and 4) constitute the basis for constructing the CBF Atlas, quantifying CBF distribution across cerebral functional regions. Step 4.2 explicitly delineates CBF levels for each brain area, pioneering a new technique. This not only provides physicians with a global view of patient CBF but also quantitative measurements of individual functional regions. Step 5.1 demonstrates that the CBF Atlas holds substantial clinical diagnostic utility distinguishing CCI from healthy controls.

<p class=…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This study received significant support and modeling assistance from the R&D department of Beijing Intelligent Entropy Science & Technology Co Ltd., Beijing, China.

Materials

CBF Atlas Intelligent Entropy CBF Atlas V1.0 Beijing Intelligent Entropy Science & Technology Co Ltd.
Modeling for Thyroid Disease
MATLAB MathWorks 2023B Computing and visualization
MRI Device Siemens Amria 1.5 T MRI scanner

References

  1. Rodriguez, G., et al. Regional cerebral blood flow in chronic stroke patients. Stroke. 24 (1), 94-99 (1993).
  2. Kwok, C. H. R., et al. Cognition and cerebral blood flow after extracranial carotid revascularization for carotid atherosclerosis: A systematic review. Clin Ther. 45 (11), 1069-1076 (2023).
  3. Togao, O., et al. Arterial spin labeling-based MR angiography for cerebrovascular diseases: Principles and clinical applications. J Magn Reson Imaging. , (2023).
  4. Haidar, H., Majzoub, R. E., Hajeer, S., Abbas, L. A. Arterial spin labeling (ASL-MRI) versus fluorodeoxyglucose-PET (FDG-PET) in diagnosing dementia: a systematic review and meta-analysis. BMC Neurol. 23 (1), 385 (2023).
  5. Xu, Y., Tan, G., Chen, D., Liu, J., Zhou, Z., Liu, L. Arterial spin labeling perfusion MRI applications in drug-resistant epilepsy and epileptic emergency. Acta Epileptol. 5, 23 (2023).
  6. Xie, H., et al. Abnormalities of cerebral blood flow and the regional brain function in Parkinson’s disease: a systematic review and multimodal neuroimaging meta-analysis. Front Neurol. 14, 1289934 (2023).
  7. Tenberg, A., et al. Dysautonomia and activity in the early stroke recovery period. Neurol Sci. 45 (6), 2505-2521 (2024).
  8. Joshi, D., Prasad, S., Saini, J., Ingalhalikar, M. Role of arterial spin labeling (ASL) images in Parkinson’s disease (PD): A systematic review. Acad Radiol. 30 (8), 1695-1708 (2023).
  9. Mohamed, A. Z., Kwiatek, R., Fante, P. D., Calhoun, V. D., Lagopoulos, J., Shan, Z. Y. Functional MRI of the brainstem for assessing its autonomic functions: From imaging parameters and analysis to functional atlas. J Magn Reson Imaging. , (2024).
  10. Vanherle, L., Matuskova, H., Don-Doncow, N., Uhl, F. E., Meissner, A. Improving cerebrovascular function to increase neuronal recovery in neurodegeneration associated to cardiovascular disease. Front Cell Dev Biol. 8, 53 (2020).
  11. Fujimura, M., Tominaga, T. Significance of cerebral blood flow analysis in the acute stage after revascularization surgery for Moyamoya disease. Neurol Med Chir (Tokyo). 55 (10), 775-781 (2015).
  12. Østergaard, L., et al. The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 33 (12), 1825-1837 (2013).
  13. Mankoo, A., et al. The role of the autonomic nervous system in cerebral blood flow regulation in stroke: A review. Auton Neurosci. 246, 103082 (2023).
  14. Yang, X., Qiang, Q., Li, N., Feng, P., Wei, W., Hölscher, C. Neuroprotective mechanisms of glucagon-like peptide-1-based therapies in ischemic stroke: An update based on preclinical research. Front Neurol. 13, 844697 (2022).
  15. Ho, M. -. L. Arterial spin labeling: Clinical applications. J Neuroradiol. 45 (5), 276-289 (2018).
  16. Sforza, M., Bianchini, E., Alivernini, D., Salvetti, M., Pontieri, F. E., Sette, G. The impact of cerebral vasomotor reactivity on cerebrovascular diseases and cognitive impairment. J Neural Transm (Vienna). 129 (11), 1321-1330 (2022).
  17. Elhadad, A., Jamjoom, M., Abulkasim, H. Reduction of NIFTI files storage and compression to facilitate telemedicine services based on quantization hiding of downsampling approach. Sci Rep. 14 (1), 5168 (2024).
  18. Gonzalez-Ortiz, F., Kac, P. R., Brum, W. S., Zetterberg, H., Blennow, K., Karikari, T. K. Plasma phospho-tau in Alzheimer’s disease: towards diagnostic and therapeutic trial applications. Mol Neurodegener. 18 (1), 18 (2023).
  19. Magliozzi, R., et al. CSF parvalbumin levels reflect interneuron loss linked with cortical pathology in multiple sclerosis. Ann Clin Transl Neurol. 8 (5), 534-547 (2021).
  20. Kawano, H., et al. Aging and sex differences in brain volume and cerebral blood flow. Aging Dis. , (2023).
  21. Jia, R., Solé-Guardia, G., Kiliaan, A. J. Blood-brain barrier pathology in cerebral small vessel disease. Neural Regen Res. 19 (6), 1233-1240 (2023).

Play Video

Citer Cet Article
Tan, Z., Xing, F., Zhang, L. Construction and Application of Cerebral Functional Region-Based Cerebral Blood Flow Atlas Using Magnetic Resonance Imaging-Arterial Spin Labeling. J. Vis. Exp. (207), e66853, doi:10.3791/66853 (2024).

View Video