Back to chapter

15.2:

Seleção de Antibióticos

JoVE Core
Biologia
È necessario avere un abbonamento a JoVE per visualizzare questo.  Accedi o inizia la tua prova gratuita.
JoVE Core Biologia
Antibiotic Selection

Lingue

Condividere

A seleção de antibiótico é usada geralmente para garantir que uma colônia bacteriana contenha um plasmídeo com algumas características chave. Um gene resistente ao antibiótico, e um gene de interesse que um pesquisador quer expressar. Para que as bactérias absorvam o plasmídeo, ambos precisam ser incubados juntos, e passar por um choque de calor para promover a incorporação. Nem toda bactéria absorverá uma cópia do plasmídeo. Como o objetivo é isolar bactérias que possuem uma cópia, os pesquisadores adicionam um pouco da cultura bacteriana em uma placa contendo um antibiótico. Apenas as bactérias que tiverem o plasmídeo que contém o gene de resistência serão capazes de degradar o antibiótico e crescer na placa. Durante os dias seguintes, uma única bactéria formará colônias que poderão ser selecionadas para trabalho adicional.

15.2:

Seleção de Antibióticos

Visão Geral

Investigadores usam genes de resistência a antibióticos para identificar bactérias que possuem um plasmídeo contendo o seu gene de interesse. A resistência a antibióticos ocorre naturalmente quando uma mutação espontânea do DNA cria alterações em genes bacterianos que eliminam a atividade dos antibióticos. As bactérias podem compartilhar esses novos genes de resistência com os seus descendentes e outras bactérias. O uso excessivo e o uso indevido de antibióticos criaram uma crise de saúde pública, à medida que bactérias resistentes e multi-resistentes continuam a desenvolver-se.

A Resistência a Antibióticos é uma Ferramenta Essencial na Engenharia Genética

Antibióticos, como a penicilina, são fármacos que matam ou param o crescimento bacteriano. Bactérias que naturalmente ou artificialmente adquiriram genes de resistência a antibióticos não respondem a antibióticos. Os cientistas exploram isso criando plasmídeos—pequenos pedaços auto-replicantes de DNA—que carregam um gene de resistência a antibióticos e um gene de interesse. A resistência a antibióticos é parte integrante da clonagem do DNA que permite ao investigador identificar células que incorporaram um DNA de interesse.

O DNA de interesse do investigador é introduzido em células bacterianas usando um processo chamado transformação. A transformação bacteriana envolve a criação temporária de pequenos buracos na parede celular bacteriana para permitir a incorporação de DNA externo, como um plasmídeo. Só algumas células bacterianas incorporam novo DNA. Uma vez que o plasmídeo inclui tanto o DNA de interesse como um gene que confere resistência a um antibiótico específico, aplicar o antibiótico às células bacterianas (ou seja, seleção por antibióticos) pode ajudar a determinar que células foram geneticamente modificadas.

O investigador espalha as células bacterianas em uma placa de cultura contendo um antibiótico escolhido. Apenas bactérias contendo o gene de resistência ao antibiótico sobrevivem e crescem na placa. Após alguns dias, o investigador pode selecionar uma colónia bacteriana para cultivar para outras experiências—como estudos de expressão genética. Após a seleção por antibiótico, o investigador testa ainda mais as bactérias usando outros métodos (por exemplo, PCR) para confirmar que o DNA de interesse está correto. Erros muitas vezes ocorrem, como o plasmídeo não conter o gene de interesse de todo.

As Bactérias Podem Adquirir Resistência a Antibióticos Naturalmente

As bactérias podem adquirir resistência a antibióticos através de mutações espontâneas do DNA que alteram as proteínas produzidas pela célula. Bactérias resistentes podem produzir proteínas que fazem com que o antibiótico seja degradado, bombeado para fora da célula ou impedido de interagir com o seu alvo. Por exemplo, o antibiótico vancomicina inibe a síntese da parede celular bacteriana. Algumas bactérias desenvolveram resistência a este antibiótico alterando os tipos de subunidades proteicas—aminoácidos—usados na criação da sua parede celular para outros que não são afetados pela vancomicina.

Assim que os genes de resistência a antibióticos emergem, as bactérias podem passá-los para os seus descendentes. As bactérias também podem adquirir genes de resistência a antibióticos de outras bactérias da mesma ou de diferentes espécies através de um processo chamado transferência genética horizontal (HGT). Existem três mecanismos de HGT: transformação, conjugação e transdução. Genes de resistência a antibióticos são frequentemente encontrados em plasmídeos ou transposões—pedaços de DNA que são facilmente transferidos entre bactérias—que são trocados durante a HGT. Como resultado, novos tipos de resistência a antibióticos podem espalhar-se rapidamente para vários tipos de bactérias infecciosas.

O Uso Clínico Excessivo e Indevido de Antibióticos Produz “Superbactérias”

Os antibióticos são um tratamento crítico para infecções bacterianas. No entanto, o seu uso pode fazer com que as bactérias se tornem resistentes e tornem o antibiótico ineficaz, levando a infecções intratáveis e potencialmente mortais. O uso excessivo e o uso indevido de antibióticos—por exemplo, o uso de antibióticos para tratar infecções virais (em vez de bacterianas) ou para aumentar o crescimento pecuário—é problemático porque promove resistência.

Os antibióticos fazem com que a resistência evolua porque matam bactérias suscetíveis e deixam apenas os indivíduos resistentes. As bactérias sobreviventes dividem-se rapidamente, produzindo descendentes com a mesma resistência a antibióticos. Quando os antibióticos são muito usados, essa pressão de seleção faz com que o número de bactérias resistentes na população aumente rapidamente. Esta é uma grande preocupação de saúde pública porque aumenta a resistência a antibióticos e cria “superbactérias” que são resistentes a múltiplos antibióticos. O uso excessivo contínuo e o uso indevido de antibióticos podem eventualmente esgotar as opções de tratamento para infecções bacterianas.

Suggested Reading

Courvalin, P. 2016. “Why Is Antibiotic Resistance a Deadly Emerging Disease?” Clinical Microbiology and Infection 22 (5): 405–7. [Source]

Daubin, Vincent, and Gergely J. Szöllősi. 2016. “Horizontal Gene Transfer and the History of Life.” Cold Spring Harbor Perspectives in Biology 8 (4). [Source]

Hiltunen, Teppo, Marko Virta, and Anna-Liisa Laine. 2017. “Antibiotic Resistance in the Wild: An Eco-Evolutionary Perspective.” Philosophical Transactions of the Royal Society B: Biological Sciences 372 (1712). [Source]