Summary

一个可逆的,非侵入性方法,气道阻力测量和支气管肺泡灌洗小鼠流体取样

Published: April 13, 2010
doi:

Summary

重复测量的啮齿类动物的呼吸生理学和呼吸道炎症细胞取样是可取的,但一般并不可行。在这里,我们描述了一种可重复的方法,口头插管的小鼠气道高反应和呼吸道炎症细胞取样的反复测量,允许。

Abstract

实验性哮喘模型气道高反应(AHR)的测量和支气管肺泡灌洗(BAL)流体取样是必不可少的,但重复的程序,以获取这样的测量,在相同的动物一般都是不可行的。在这里,我们展示了用于从小鼠中获得的AHR的反复测量和支气管肺泡灌洗液标本的协议。小鼠超过14天的挑战滴鼻,一个强有力的过敏原或治疗深水七倍。之前最初的挑战,并在24小时内,每个鼻内挑战,相同的动物麻醉后,经口头插管和机械通气。 AHR,通过增加乙酰胆碱(Ach)深水和过敏原的挑战动物之间的氯化的静脉注射引起的呼吸道系统阻力(RRS)的剂量反应曲线比较评估,进行了测定。之后,通过相同的插管,左肺灌洗,使气道细胞的差枚举可以执行。这些研究显示,反复测量,AHR的BAL液收集可能来自同一动物,在7-10天开始过敏原的挑战实现,最大的气道高反应性气道嗜酸性粒细胞增多。这种新颖的技术,大大减少了纵向实验所需的老鼠的数量,并适用于各种啮齿类动物,疾病模型气道生理仪器。

Protocol

过敏原的挑战: C57BL / 6小鼠,年龄4-8周,是在一个密闭的有机玻璃清除氧蒸汽混合物在3.2%异氟醚10分钟,以实现深全身麻醉室麻醉。 鼻腔过敏原的挑战(45μLOVA(22.5微克)和7μLA.水稻(7微克),在PBS)的管理,每星期二,星期四和星期日,共连续七年申请。 麻醉: 管理之前,每个过敏原的挑战,并按照第七挑战,小鼠腹腔注射48毫克/公?…

Discussion

哮喘的研究,以及其他各种气道阻塞性疾病,构成一个生物医学研究的活跃和扩大的领域。与哮喘有关的实验研究的一个重要组成部分,是衡量不同条件下的气道大小的变化的能力。过多的气道狭窄回应挑衅性的挑战,哮喘和相关的肺部疾病的一个典型特征,称为气道高反应性呼吸道财产,是一个有临床意义的攻击导致气短,呼吸困难等症状,其中包括死亡的重要组成部分。

<p class="jove_content…

Acknowledgements

我们感谢W。Mintzer博士的建议,执行纤维气管插管。支持的赠款U19AI070973,R01AI057696,K02HL75243,并从美国国立卫生研究院R01HL082487。

Materials

Airway physiology measurement software (Rescomp) was custom prepared (Millenium Premier Group; 415-519-4371).
Data was analyzed using a PC workstation running Windows XP equipped with a Pentium III CPU (Intel, Inc. Santa Clara, CA) and a 17-pin analog to digital signal converter (National Instruments, #PC-LPM16).
A small animal airway physiology workstation was custom assembled (Millenium Premier Group) using commercially available pressure transducers (part #TRD5700 and TRD4510), preamp modules (part #MAX2270), chassis (part # MAX1320; all from Buxco, Inc. Wilmington, NC) and a customized small animal plethysmograph.
0.5mm external diameter fiber-optic thread, connected to light source (Cole Palmer Illuminator, 41722 series)
Ventilator (Harvard Apparatus Mouse Ventilator, #687)
10 mm, 27ga needle (BD Biosciences, cat. no. 309602)
Heat lamp
1 ml syringe (BD Biosciences, cat. no. 305109)
4 clamps (Pony 3200 spring clamp)
0.5 mm external wire for intubation guide
Hemacytometer
Superfrost/plus microscope slides (Fisher cat. no. 12-550-15)
Shandon Filter Cards (Thermo cat. no. 5991022)
Differential cell slide stain (Fisher cat. no. 122911)
Light microscope (Leica)
Cytospin 3 (Shandon)
20 ga, 1.25 inch ProtectIV intravenous catheters (Smith Medical)
0.5 mm polymer optical fiber (Edmund Optics # NT02-532).

<!– OLD Materials List 4/12/10 Changed

Airway physiology measurement software (Rescomp) was custom prepared (Millenium Premier Group; 415-519-4371) and data were analyzed using a PC workstation running Windows XP equipped with a Pentium III CPU (Intel, Inc. Santa Clara, CA) and a 17-pin analog to digital signal converter (National Instruments, #PC-LPM16). Small animal airway physiology workstation was custom assembled (Millenium Premier Group) using commercially available pressure transducers (part #TRD5700 and TRD4510), preamp modules (part #MAX2270) and chassis (part # MAX1320; all from Buxco, Inc. Wilmington, NC) and a customized small animal plethysmograph. 0.5mm external diameter fiber-optic thread, connected to light source (Cole Palmer Illuminator, 41722 series); Ventilator (Harvard Apparatus Mouse Ventilator, #687); 10 mm, 27ga needle (BD Biosciences, cat. no. 309602); Heat lamp; 1 ml syringe (BD Biosciences, cat. no. 305109); 4 clamps (Pony 3200 spring clamp); 0.5 mm external wire for intubation guide); Hemacytometer; Superfrost/plus microscope slides (Fisher cat. no. 12-550-15); Shandon Filter Cards (Thermo cat. no. 5991022); Differential cell slide stain (Fisher cat. no. 122911); Light microscope (Leica); Cytospin 3 (Shandon); 20 ga, 1.25 inch ProtectIV intravenous catheters (Smith Medical); 0.5 mm polymer optical fiber (Edmund Optics # NT02-532).

–>

Riferimenti

  1. Hamelmann, E. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am. J. Respir. Crit. Care Med. 156, 766-775 (1997).
  2. Adler, A., Cieslewicz, G., Irvin, C. G. Unrestrained plethysmography is an unreliable measure of airway responsiveness in BALB/c and C57BL/6 mice. J. Appl. Physiol. 97, 286-292 (2004).
  3. Bates, J. The use and misuse of penh in animal models of lung disease. Am. J. Respir. Cell Mol. Biol. 31, 373-374 (2004).
  4. Lundblad, L. K., Irvin, C. G., Adler, A., Bates, J. H. A reevaluation of the validity of unrestrained plethysmography in mice. J. Appl. Physiol. 93, 1198-1207 (2002).
  5. Grunig, G. Requirement for IL-13 independently of IL-4 in experimental asthma. Science. 282, 2261-2263 (1998).
  6. Corry, D. B. Requirements for allergen-induced airway hyperreactivity in T and B cell-deficient mice. Mol. Med. 4, 344-355 (1998).
  7. Corry, D. B. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J. Exp. Med. 183, 109-117 (1996).
  8. Amdur, M. O., Mead, J. Mechanics of respiration in unanesthetized guinea pigs. Am J Physiol. 192, 364-368 (1958).
check_url/it/1720?article_type=t

Play Video

Citazione di questo articolo
Polikepahad, S., Barranco, W. T., Porter, P., Anderson, B., Kheradmand, F., Corry, D. B. A Reversible, Non-invasive Method for Airway Resistance Measurements and Bronchoalveolar Lavage Fluid Sampling in Mice. J. Vis. Exp. (38), e1720, doi:10.3791/1720 (2010).

View Video