Summary

Etiquetado de la célula y de inyección en Desarrollo de embriones de ratón Corazones

Published: April 17, 2014
doi:

Summary

Se describe una serie de métodos para inyectar colorantes, vectores de ADN, virus, y células con el fin de supervisar tanto el destino celular y el fenotipo de las células endógenas y injertados derivados de células embrionarias o pluripotentes dentro de embriones de ratón en el día embrionario (E) 9,5 y etapas posteriores de desarrollo.

Abstract

Probando el destino de la célula de vástago derivados embrionarios o pluripotentes en protocolos in vitro ha conducido a resultados controvertidos que no reflejan necesariamente su potencial in vivo. Preferiblemente, estas células deben ser colocados en un entorno embrionario adecuado con el fin de adquirir su fenotipo definido. Por otra parte, el linaje celular rastreo estudios en el ratón después de etiquetar las células con colorantes o vectores retrovirales se ha mantenido mayormente limitada a los embriones de ratón en fase inicial con los órganos todavía poco desarrollados. Para superar estas limitaciones, hemos diseñado protocolos de microinyección estándar y de ultrasonido mediada para inyectar diversos agentes en regiones específicas del corazón en embriones de ratón en E9.5 y etapas posteriores del desarrollo. Explante embrionarias o embriones se cultivan o hacia la izquierda para seguir desarrollando en el útero. Estos agentes incluyen los tintes fluorescentes, virus, shRNAs, o las células madre derivadas de células progenitoras. Nuestros enfoques permiten la preservación de la funciones del órgano mientras se monitorea la migración y el destino de las células marcadas y / o inyectados. Estas tecnologías pueden extenderse a otros órganos y va a ser muy útil para hacer frente a cuestiones biológicas fundamentales en la biología del desarrollo.

Introduction

Hace más de una década, las células madre embrionarias humanas (HuESCs) se han derivado de blastocistos humanos 1. Desde entonces, estas células han sido objeto de un importante campo de investigación que se ocupa de las cuestiones no cubiertas en la biología del desarrollo humano. HuESCs han proporcionado, además, las esperanzas en la medicina regenerativa. En los últimos años, las células madre pluripotentes inducidas (iPSCs humanos) se han generado a partir de células somáticas específicas del paciente, proporcionando modelos de enfermedad genética 2. Muchos en los protocolos in vitro para la diferenciación de células madre embrionarias pluripotentes inducidas o hacia diferentes linajes de células, incluyendo los linajes del corazón 3, han sido reportados. Las células diferenciadas son a menudo fenotipados por análisis de ARN y la expresión de proteínas, inmunotinción, y / o en las pruebas funcionales in vitro. Sin embargo, los derivados de células madre pluripotentes tienen que ser colocados en un entorno embrionario adecuado con el fin de probar si adquieren plenamente la CELl destino de su contraparte embrionario y si recapitulan la función genuina en vivo en respuesta a las señales regionales. Mientras que la ingeniería de tejidos es prometedor, aún no ofrece todas las señales conocidas y desconocidas de la adecuada in vivo el tejido embrionario en desarrollo 4,5.

Etiquetado celular con tintes o vectores retrovirales en los embriones, incluyendo embriones de ratón, han traído información importante sobre el origen embrionario de los linajes de células durante el desarrollo cardíaco 6. Por ejemplo, la inyección de colorante en el espacio pericárdico de embriones de ratón ex vivo, seguido por cultivo in vitro de corazones aislados, se utilizó para marcar las células epicárdicas y sus descendientes 7. Sin embargo, el tinte y el etiquetado de células retroviral se han aplicado sobre todo a los embriones tempranos de ratón con órganos aún poco desarrolladas, o embriones de pollo, que son de más fácil acceso 8. Una excepción es el cerebro, que es más fácil de apuntar en la direcciónmbryos 9,10. Este enfoque aún no se ha aplicado a la superando corazón embrionario de ratón.

Para complementar el marcaje directo con tintes o virus y para realizar el seguimiento en el linaje más avanzados embriones de ratón de la etapa y ratones adultos, el mecanismo de etiquetado de células se ha combinado con el análisis de los ratones transgénicos usando la tecnología Cre / Lox. El enfoque de Cre / Lox 11 sin embargo ofrece algunas limitaciones debido a la especificidad espacio-temporal de las regiones reguladoras genómicas utilizadas para dirigir la expresión de la recombinasa, y la eficiencia de la recombinación Cre / Lox 12. Además, este enfoque no aborda completamente las preguntas específicas de la adquisición de la migración impulsada por células de destino de la célula, ya que sólo puede etiquetar un precursor después de la activación de la región reguladora utilizada para conducir la expresión de Cre. También no se puede aplicar a los embriones humanos para cuestiones éticas obvias.

Teniendo en cuenta estas limitaciones, hemos diseñado una serie de nuevos protocolos para inyectar una variedad de agentes de marcaje de células, tales como colorantes fluorescentes, virus, moduladores de expresión de genes tales como shRNAs y vectores de etiquetado de células basadas en el ADN, o células en el embrión de ratón en E9.5 y etapas posteriores del desarrollo en regiones seleccionadas de la corazón.

Las inyecciones de ADN / celulares utilizan un microscopio estereoscópico y un dispositivo de microinyección sencillo con ex vivo el cultivo de embriones de hasta 48 horas, o el corazón aislado o cultivo de explantes de embriones de 48 a 72 h. Nos informan también un protocolo de microinyección por ultrasonidos mediado en ratón corazones embrionarios en el útero. Esta técnica permite monitorear el desarrollo de los embriones de 13 y permite un seguimiento a largo plazo de los injectates y / o células marcadas.

Hemos encontrado que estos enfoques preservar la función del órgano y proporcionan un entorno más representativo que las pruebas in vitro de potencial de células madre. También proporciona la oportunidad de seguir la migraciónde la etiqueta y / o inyectado células para controlar su destino. En última instancia, esto debería producir una mejor comprensión de los patrones de tejido regional y los procesos biológicos clave.

Protocol

1. Preparación Animal procedimientos Obtener la aprobación de un comité ético de los animales y seguir las directrices institucionales para el trabajo con virus, HuESC y / o de IPSC (cuando corresponda), así como el manejo del ratón, la obtención de embriones de ratón, y la realización de la cirugía de ratón. Para apareamientos programados, el día de la clavija es considerado el día embrionario (E) 0,5 / 0,5 días post-coito. Agujas de mic…

Representative Results

El uso de los protocolos de inyección descritos anteriormente, las células pueden ser etiquetados y / o inyectados en el corazón embrionario de ratón. Como prueba de concepto, se muestran varios ejemplos en los que el protocolo de inyección y el vivo explante ex AVC, aislado del corazón, o el cultivo de embriones entera se combinaron (Figura 1). La Figura 1 muestra la preparación del embrión antes de la inyección de células. El em…

Discussion

Los in vivo protocolos intra-cardíacos ex inyección descritos anteriormente están diseñados para preservar la función miocárdica durante al menos 48 horas a mediados de la etapa (E9.5-E11.5 embriones de ratón). Estos enfoques de inyección permiten para inyección espacialmente selectiva de ADN o células. Los pocos ejemplos que se muestran en las figuras 1-3 proporcionan una prueba de concepto para delinear ex vivo e in vivo los mecanismos moleculares de los p…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Los autores agradecen la Fundación Leducq (mitral) y la Agence Nationale pour la Recherche (ANR conceder Specistem) para la financiación de esta investigación.

Materials

Setups / Hardware
40 MHz Transducer VisualSonics MS550S
Microinjector VisualSonics
Microinjector  Eppendorf 5242
Micromanipulator  Eppendorf 5171
Nitrogen required to pressurize the injector
Rail system VisualSonics
rotator to rotate glass tube with embryos inside the incubator
Standard incubator 5% CO2, 37 C
stereomicroscope Zeiss Discovery. V8
Vevo 2100 VisualSonics
Microinjection
borosilicate capillary tubes World Precision Instrument KTW-120-6 1.2 mm external diameter
pipette puller  Sutter Model P87
microinjection needles Origio-Humagen  C060609 OD/ID 1.14mm/53mm, with 50/35 um OD/ID tip
Hamilton syringes 
Petridishes 10 cm diameter
Mineral oil  Sigma M8410
Silicon membrane Visualsonics 4.3×4.3 cm
Play-Doh
Isoflurane Vet One
hair removal agent  Nair
eye lubricant Optixcare 31779
Electrode gel (Signa) Parker
Suture Sofsilk 5-0 S1173
Ultrasound gel Aquasonic
Buprenex Buprenex (buprenorphine hydrochloride) Reckitt Benckiser Pharmaceuticals Inc. NDC 12496-0757-1 0.05-0.1 mg/kg in saline
Altro
Silicone Elastomer Dow Corning Sylgard 184 
Glass petridishes Fine Science Tools  60mm diameter
insect pins  Fine Science Tools  26002-20
Media and culture reagents
Optimem medium Life Technologies 51985026
M2 medium  Sigma M7167
Dulbecco’s Eagle Medium Lonza BE12-640F high glucose and 50% rat serum
M16 medium  Sigma M7292
rat serum Janvier ODI 7158
pennicilin/streptomycin  Life Technologies 15140-12
oxygen 40% Air liquid required to oxygenate the embryo culture medium
fetal calf serum Fisher RVJ35882
matrigel BD 356230
collagen type I BD 354236 to coat culture dishes for explant culture
culture dishes Dutcher /Orange 131020
Injectates
CDCFDA-SE  Invitrogen/Molecular Probes  C1165 25mg/ml DMSO. Store at -20 C. Dilute 1:100-200 in saline before use. 
PGK-GFP-expressing lentivirus  ~8E9 transducing units/ml DMEM
lipofectamine 2000  Life Technologies 11668019

Riferimenti

  1. Thomson, J. A., et al. Embryonic stem cell lines derived from human blastocysts. Science. 282, 1145-1147 (1998).
  2. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  3. Mummery, C. L., et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111, 344-358 (2012).
  4. Badylak, S. F., Taylor, D., Uygun, K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13, 27-53 (2011).
  5. Dickinson, L. E., Kusuma, S., Gerecht, S. Reconstructing the differentiation niche of embryonic stem cells using biomaterials. Macromol. Biosci. 11, 36-49 (2011).
  6. Van Vliet, P., Zaffran, S., Wu, S., Puceat, M. Early cardiac development: a view from stem cells to embryos. Cardiovasc. Res. In press, (2012).
  7. Cai, C. L., et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 454, 104-108 (2008).
  8. Boulland, J. L., Halasi, G., Kasumacic, N., Glover, J. C. Xenotransplantation of human stem cells into the chicken. J. Vis. Exp. , (2010).
  9. Liu, A., Joyner, A. L., Turnbull, D. H. Alteration of limb and brain patterning in early mouse embryos by ultrasound-guided injection of Shh-expressing cells. Mech. Dev. 75, 107-115 (1998).
  10. Pierfelice, T. J., Gaiano, N. Ultrasound-guided microinjection into the mouse forebrain in utero at E9.5. J. Vis. Exp. , (2010).
  11. Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis. 26, 99-109 (2000).
  12. Buckingham, M. E., Meilhac, S. M. Tracing cells for tracking cell lineage and clonal. Dev. Cell. 21, 394-409 (2011).
  13. Phoon, C. K. Imaging tools for the developmental biologist: ultrasound biomicroscopy of mouse embryonic development. Pediatr. Res. 60, 14-21 (2006).
  14. Tiscornia, G., Singer, O., Verma, I. M. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241-245 (2006).
  15. Dyer, L. A., Patterson, C. A Novel Ex vivo Culture Method for the Embryonic Mouse. J. Vix. Exp. , (2013).
  16. Runyan, R. B., Markwald, R. R. Invasion of mesenchyme into three-dimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue. Dev. Biol. 95, 108-114 (1983).

Play Video

Citazione di questo articolo
Hiriart, E., van Vliet, P., Dirschinger, R. J., Evans, S. M., Puceat, M. Cell Labeling and Injection in Developing Embryonic Mouse Hearts. J. Vis. Exp. (86), e51356, doi:10.3791/51356 (2014).

View Video