Summary

Labor Schätzung der Netto Trophic Transfereffizienz von PCB auf Seeforelle (<em> Salvelinus namaycush</em>) Von seiner Beute

Published: August 29, 2014
doi:

Summary

Eine Technik für Labor-Schätzung des Netto trophische Transfereffizienz von polychlorierten Biphenylen (PCB) Kongenere fischfressenden Fisch aus ihrer Beute wird vorgestellt. Anwendbarkeit der Laborergebnisse auf dem Gebiet maximieren, sollte die fischfressenden Fische Beutefische, die in der Regel im Feld gegessen werden zugeführt werden.

Abstract

Eine Technik zur Schätzung der Netto-Labor trophische Transfereffizienz (γ) von polychlorierten Biphenylen (PCB) Kongenere piscivorous Fisch von Beute wird hier beschrieben. Während eines 135-Tage-Laborexperiment, wir gefüttert Bückling (Coregonus hoyi), die in den Lake Michigan zu Seeforelle (Salvelinus namaycush) gefangen worden war in acht Labortanks gehalten. Bückling ist eine natürliche Beute für Seeforellen. In vier der Tanks wurde eine relativ hohe Strömungsgeschwindigkeit verwendet werden, um relativ hohe Aktivität von der Seeforelle zu gewährleisten, wohingegen ein niedriger Flussrate wurde in den anderen vier Tanks verwendet, so dass für niedrige Seeforelle Aktivität. An einem Tank-Nebentank Grundlage wurde die Menge der Nahrung durch die Forelle an jedem Tag des Experiments aufgezeichnet gegessen. Jede Forelle wurde zu Beginn und am Ende des Versuchs gewogen. Vier bis neun Forelle aus jeder der acht Tanks wurden zu Beginn des Experiments getötet und alle in jedem der Tanks verbleibenden 10 Seforelle waren euthanized am Ende des Experiments. Wir bestimmten Konzentrationen der PCB 75 in der Forelle zu Beginn des Experiments in der Forelle am Ende des Experiments und bloaters See Forellen während des Versuchs zugeführt. Basierend auf diesen Messungen wurde γ für jede PCB 75 in jeder der acht Tanks berechnet. Mittlere γ wurde für jeden der 75 PCB für aktive und inaktive Seeforelle berechnet. Da das Experiment wurde in acht Tanks repliziert, der Standardfehler zu bedeuten γ geschätzt werden konnte. Ergebnisse aus dieser Art von Experiment sind bei der Risikobewertungsmodelle für zukünftige Gefahr für Mensch und Tier Verzehr von kontaminierten Fischen unter verschiedenen Szenarien von einer Kontamination der Umwelt vorherzusagen.

Introduction

Of all of the factors affecting the rate at which fish accumulate contaminants, the efficiency with which fish retain contaminants from the food that they eat is one of the most important1-3. Risk assessment models have been developed to predict future risks to both people and wildlife eating contaminated fish under various scenarios of environmental contamination, and the reliability of these predictions critically depends on the accuracy of the estimates of the efficiency at which fish retain contaminants from their food4.

The efficiency with which the contaminant in the food ingested by the predator is transported through the gut wall is known as gross trophic transfer efficiency5. A portion of the quantity of the contaminant transported through the gut wall of the predator may eventually be lost through depuration and/or metabolic transformation. The efficiency with which the contaminant in the food ingested by the predator is retained by the predator, including any losses due to elimination and metabolic transformation, is known as net trophic transfer efficiency6.

Gross trophic transfer efficiency of organic contaminants to fish from their prey appears to vary with the contaminant’s chemical properties, including lipid affiliation as measured by the octanol-water partition coefficient, Kow3,7. According to an empirical relationship developed by Thomann3, gross trophic transfer efficiency is relatively high when log Kow is equal to a value between 5 and 6. Gross trophic transfer efficiency declines exponentially at a rate of 50% per unit of log Kow as log Kow increases from 6 to 10, according to the Thomann3 relationship.

Nevertheless, the gross and net trophic transfer efficiencies of polychlorinated biphenyl (PCB) congeners to fish from their prey do not appear to follow the Thomann3 relationship in most cases. Although the trophic transfer efficiencies of PCB congeners to lake whitefish (Coregonus clupeaformis) from its food followed the relationship proposed by Thomann8, trophic transfer efficiencies of PCB congeners were either just weakly related or not related at all to log Kow for Atlantic salmon (Salmo salar)9, rainbow trout (Oncorhynchus mykiss)10, coho salmon (Oncorhynchus kisutch)11, and northern pike (Esox lucius)11.

The overall goal of this study was to present a laboratory technique for estimating the net trophic transfer efficiencies of PCB congeners to a piscivorous fish from its prey. Lake trout (Salvelinus namaycush) was chosen as the piscivorous fish for our experiment because lake trout are relatively easy to maintain in laboratory tanks. Bloater (Coregonus hoyi) was selected as the prey fish to be fed to the lake trout because bloater is eaten by lake trout in its natural setting12. In addition, we determined whether the net trophic transfer efficiencies for lake trout estimated from our laboratory experiment followed the Thomann3 relationship. We also determined whether the degree of activity by the lake trout had a significant effect on net trophic transfer efficiency (γ) of the PCB congeners. Activity by lake trout in the Laurentian Great Lakes is believed to have recently increased because changes in the food webs have caused lake trout to allocate more energy toward searching for food13. Lake trout were forced to exercise in one set of tanks by subjecting these lake trout to relatively high flow rates, whereas the other lake trout were permitted to remain relatively inactive by subjecting them to relatively low flow rates. Finally, the specific details of our laboratory procedure that need to be carefully followed to ensure the highest degree of accuracy in the γ estimates and to make the laboratory results applicable to the field are discussed, as well as future directions for research building on our laboratory technique. Net trophic transfer efficiency can be estimated both in the laboratory and in the field, and advantages and disadvantages are associated with both approaches. Accuracy in the estimate of γ depends on the accuracy of the estimate of food consumption. The amount of food eaten by fish in the laboratory can be accurately determined when proper protocols are followed, whereas the amount of food eaten by fish in the field is typically estimated via bioenergetics modeling. Use of bioenergetics modeling to derive the amount of food eaten has the potential to introduce a substantial amount of uncertainty into the estimates of food consumption. Fish bioenergetics models have been shown to estimate food consumption with no detectable bias for the case of lake trout14,15, but considerable bias in bioenergetics model estimates of food consumption has been detected for the case of lake whitefish15,16. On the other hand, estimates of net trophic transfer efficiency estimated in the laboratory may not be applicable to the field due to a difference in feeding rates between the laboratory and the field17. Evidence from both the laboratory and the field suggest that feeding rate can influence γ14,17.

The methodology used in the present study for estimating γ in the laboratory is applicable to situations where the predator fish is fed prey fish, and the amount of prey fish eaten by the predator can be accurately tracked. To accomplish this, the experimenter must weigh all of the food before placement in the tank; and the experimenter must be able to remove all of the uneaten food from the tank, and then weigh the uneaten food. In addition, an adequate suite of mixers and blenders should be available to obtain a sufficient degree of homogenization of the samples of both predator and prey fish. Finally, the gas chromatography – mass spectrometry instrumentation used to determine the PCB congener concentrations must be capable of detecting and quantifying individual PCB congeners at relatively low concentrations.

Protocol

1. Labor-Experiment Besorgen Sie sich die Beutefische, um die Raubfische während des Experiments eingespeist werden. Vorzugsweise sind diese Raubfische sollte im Bereich, gefroren erfasst werden, und bei etwa -30 ° C gelagert. Betrachten gewerblichen Fischerei als eine mögliche Quelle für die Raubfische. Einführung der Raubfische in den Laborbehältern für den Versuch verwendet werden. Bis zu 15 Raubfische wurden in jede der 870-Liter-Druckbehälter eingeführt worden ist, und bis zu 30 Raubfi…

Representative Results

Seeforelle zeigte eine erhebliche Menge an Wachstum während des Experiments, als die ersten Seeforelle bedeuten Gewichte reichten von 694 bis 907 g, während die letzten Seeforelle bedeuten Gewichte reichten von 853 bis 1.566 g (Tabelle 1). Die durchschnittliche Menge der Nahrung durch eine Seeforelle im Laufe der 135-Tage-Experiment verbraucht reichten von 641 bis 2.649 g. Bedeuten, PCB-Konzentrationen in der Kongeners Seeforelle erhöht während des Experiments, als mittlere PCB-Konzentrationen Konge…

Discussion

Um die genauesten Schätzung der γ muß der Experimentator in der Lage, genau zu verfolgen, sowohl die Menge der Nahrung in jedem der Tanks und der Menge des Futterreste in jedem der Behälter während des Verlaufs des Experiments platziert werden. Um dies zu erreichen, muss der Experimentator in der Lage, alle Futterreste aus den Tanks zu entfernen und das Gewicht genau zu bestimmen sein. Zusätzlich zur genauen Verfolgung der Nahrung tatsächlich durch die Raubfische verzehrt, kann eine genaue Abschätzung der γ auc…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was funded, in part, by the Great Lakes Fishery Commission and the Annis Water Resources Institute. Use of trade, product, or firm names does not imply endorsement by the U. S. Government. This article is Contribution 1867 of the U. S. Geological Survey Great Lakes Science Center.

Materials

Name  Company Catalog Number Comments
870-L fiberglass tanks Frigid Units RT-430-1
2,380-L fiberglass tanks Frigid Units RT-630-1
Tricaine methanesulfonate (Finquel) Argent Chemical Laboratories, Inc. C-FINQ-UE-100G Eugenol could also be used as an anesthetic.
Ashland chef knife Chicago Cutlery SKU 1106336
Cutting board Williams-Sonoma 3863586
Hobart verical mixer (40 quart) Hobart Corporation
1.9-L food processor Robot Coupe, Inc. RSI 2Y1 
Polyethylene bags (various sizes) Arcan Inc.
I-Chem jars I-Chem 220-0125
Top-load electronic balance Mettler Toledo Mettler PM 6000 
Sodium sulfate, anhydrous – granular EMD SX0760E-3
Glass extraction thimbles (45 mm x 130 mm) Wilmad-Lab Glass LG-7070-114
Teflon boiling chips Chemware 919120
Rapid Vap nitrogen sample concentrator Labconco 7910000
N-Vap nitrogen concentrator Organomation 112
Soxhlet extraction glassware (500 mL) Wilmad-Lab Glass  LG-6900-104
Hexane Burdick & Jackson  Cat. 211-4
Dichloromethane Burdick & Jackson  Cat. 300-4
Silica gel BDH Cat. BDH9004-1KG
Labl Line 5000 mult-unit extraction heater Lab Line Instruments
Agilent 5973 GC/MS with chemical ionization Agilent 5973N
Internal standard solution  Cambridge Isotope Laboratories EC-1410-1.2
PCB congener calibration standards Accustandard C-CSQ-SET
DB-XLB column (60m x 0.25mm, 0.25 micron) Agilent/ J&W 122-1262

Riferimenti

  1. Madenjian, C. P., Carpenter, S. R., Rand, P. S. Why are the PCB concentrations of salmonine individuals from the same lake so highly variable?. Canadian Journal of Fisheries and Aquatic Sciences. 51 (4), 800-807 (1994).
  2. Madenjian, C. P., et al. Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey. Environmental Science and Technology. 32 (20), 3063-3067 (1998).
  3. Thomann, R. V. Bioaccumulation model of organic chemical distribution in aquatic food chains. Environmental Science and Technology. 23 (6), 699-707 (1989).
  4. Calabrese, E. J., Baldwin, L. A. . Performing ecological risk assessments. , (1993).
  5. Madenjian, C. P., et al. Variation in net trophic transfer efficiencies among 21 PCB congeners. Environmental Science and Technology. 33 (21), 3768-3773 (1999).
  6. Jackson, L. J., Schindler, D. E. Field estimates of net trophic transfer of PCBs from prey fishes to Lake Michigan salmonids. Environmental Science and Technology. 30 (6), 1861-1865 (1996).
  7. Gobas, F. A. P. C., Muir, D. C. G., Mackay, D. Dynamics of dietary bioaccumulation and faecal elimination of hydrophobic organic chemicals in fish. Chemosphere. 17 (5), 943-962 (1988).
  8. Madenjian, C. P., O’Connor, D. V., Rediske, R. R., O’Keefe, J. P., Pothoven, S. A. Net trophic transfer efficiencies of polychlorinated biphenyl congeners to lake whitefish (Coregonus clupeaformis) from their food. Environmental Toxicology and Chemistry. 27 (3), 631-636 (2008).
  9. Isosaarl, P., Kiviranta, H., Lie, &. #. 2. 1. 6. ;., Lundebye, A. K., Ritchie, G., Vartiainen, T. Accumulation and distribution of polychlorinated dibenzo-p-dioxin, dibenzofuran, and polychlorinated biphenyl congeners in Atlantic salmon (Salmo salar). Environmental Toxicology and Chemistry. 23 (7), 1672-1679 (2004).
  10. Buckman, A. H., Brown, S. B., Hoekstra, P. F., Solomon, K. R., Fisk, A. T. Toxicokinetics of three polychlorinated biphenyl technical mixtures in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry. 23 (7), 1725-1736 (2004).
  11. Burreau, S., Axelman, J., Broman, D., Jakobsson, E. Dietary uptake in pike (Esox lucius) of some polychlorinated biphenyls, polychlorinated naphthalenes and polybrominated diphenyl ethers administered in natural diet. Environmental Toxicology and Chemistry. 16 (12), 2508-2513 (1997).
  12. Madenjian, C. P., DeSorcie, T. J., Stedman, R. M. Ontogenic and spatial patterns in diet and growth of lake trout in Lake Michigan. Transactions of the American Fisheries Society. 127 (2), 236-252 (1998).
  13. Paterson, G., Whittle, D. M., Drouillard, K. G., Haffner, G. D. Declining lake trout (Salvelinus namaycush) energy density: are there too many salmonid predators in the Great Lakes?. Canadian Journal of Fisheries and Aquatic Sciences. 66 (6), 919-932 (2009).
  14. Madenjian, C. P., O’Connor, D. V., Nortrup, D. A. A new approach toward evaluation of fish bioenergetics models. Canadian Journal of Fisheries and Aquatic Sciences. 57 (5), 1025-1032 (2000).
  15. Madenjian, C. P., Pothoven, S. A., Kao, Y. C. Reevaluation of lake trout and lake whitefish bioenergetics models. Journal of Great Lakes Research. 39 (2), 358-364 (2013).
  16. Madenjian, C. P., et al. Evaluation of a lake whitefish bioenergetics model. Transactions of the American Fisheries Society. 135 (1), 61-75 (2006).
  17. Madenjian, C. P., O’Connor, D. V., Chernyak, S. M., Rediske, R. R., O’Keefe, J. P. Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model. Canadian Journal of Fisheries and Aquatic Sciences. 61 (4), 627-635 (2004).
  18. Madenjian, C. P., David, S. R., Rediske, R. R., O’Keefe, J. P. Net trophic transfer efficiencies of polychlorinated biphenyl congeners to lake trout (Salvelinus namaycush) from its prey. Environmental Toxicology and Chemistry. 31 (12), 2821-2827 (2012).
  19. Madenjian, C. P., O’Connor, D. V. Laboratory evaluation of a lake trout bioenergetics model. Transactions of the American Fisheries Society. 128 (5), 802-814 (1999).
  20. Ballschmiter, K., Bacher, R., Mennel, A., Fischer, R., Riehle, U., Swerev, M. The determination of chlorinated biphenyls, chlorinated dibenzodioxins, and chlorinated dibenzofurans by GC-MS. HRC Journal of High Resolution Chromatography. 15 (4), 260-270 (1992).
  21. Madenjian, C. P., David, S. R., Pothoven, S. A. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model. Transactions of the American Fisheries Society. 141 (5), 1328-1337 (2012).
  22. Lieb, A. J., Bills, D. D., Sinnhuber, R. O. Accumulation of dietary polychlorinated biphenyls (Aroclor 1254) by rainbow trout. Journal of Agricultural and Food Chemistry. 22 (4), 638-642 (1974).
  23. Niimi, A. J., Oliver, B. G. Biological half-lives of polychlorinated biphenyl (PCB) congeners in whole fish and muscle of rainbow trout (Salmo gairdneri). Canadian Journal of Fisheries and Aquatic Sciences. 40 (9), 1388-1394 (1983).
  24. Gobas, F. A. P. C., Wilcockson, J. B., Russell, R. W., Haffner, G. D. Mechanism of biomagnification in fish under laboratory and field conditions. Environmental Science and Technology. 33 (1), 133-141 (1999).
  25. Dmitrovic, J., Chan, S. C. Determination of polychlorinated biphenyl congeners in human milk by gas chromatography – negative chemical ionization mass spectrometry after sample clean-up by solid-phase extraction. Journal of Chromatography B. 778 (1-2), 147-155 (2002).
  26. Zorn, M. E., Gibbons, R. D., Sonzogni, W. C. Weighted least-squares approach to calculating limits of detection and quantification by modeling variability as a function of concentration. Analytical Chemistry. 69 (15), 3069-3075 (1997).
check_url/it/51496?article_type=t

Play Video

Citazione di questo articolo
Madenjian, C. P., Rediske, R. R., O’Keefe, J. P., David, S. R. Laboratory Estimation of Net Trophic Transfer Efficiencies of PCB Congeners to Lake Trout (Salvelinus namaycush) from Its Prey. J. Vis. Exp. (90), e51496, doi:10.3791/51496 (2014).

View Video