Summary

Lineær forstærkning Mediated PCR - Lokalisering af genetiske elementer og karakterisering af Ukendt flankerende DNA

Published: June 25, 2014
doi:

Summary

Lineær-forstærkning medieret (LAM)-PCR er en metode udviklet til at identificere de præcise positioner for at integrere virale vektorer i genomet. Teknikken har udviklet sig til at være den overlegne metode til at studere klonale dynamik i patienter genterapi, biosikkerhed af nye vektor teknologier, T-celle mangfoldighed cancer stamceller modeller osv.

Abstract

Linear-amplification mediated PCR (LAM-PCR) has been developed to study hematopoiesis in gene corrected cells of patients treated by gene therapy with integrating vector systems. Due to the stable integration of retroviral vectors, integration sites can be used to study the clonal fate of individual cells and their progeny. LAM- PCR for the first time provided evidence that leukemia in gene therapy treated patients originated from provirus induced overexpression of a neighboring proto-oncogene. The high sensitivity and specificity of LAM-PCR compared to existing methods like inverse PCR and ligation mediated (LM)-PCR is achieved by an initial preamplification step (linear PCR of 100 cycles) using biotinylated vector specific primers which allow subsequent reaction steps to be carried out on solid phase (magnetic beads). LAM-PCR is currently the most sensitive method available to identify unknown DNA which is located in the proximity of known DNA. Recently, a variant of LAM-PCR has been developed that circumvents restriction digest thus abrogating retrieval bias of integration sites and enables a comprehensive analysis of provirus locations in host genomes. The following protocol explains step-by-step the amplification of both 3’- and 5’- sequences adjacent to the integrated lentiviral vector.

Introduction

Lineær amplifikation medieret PCR (LAM-PCR) kan identificere og karakterisere ukendt flankerende DNA tilstødende til kendte DNA af enhver oprindelse. Mere specifikt har LAM-PCR er blevet udviklet til at lokalisere viral vector integration sites (IS) i værtsgenomet 1,2. Genetiske elementer som retrovirus eller transposoner integrerer deres genom i værtens genom i en (semi-) tilfældig måde 3-6. I mange tilfælde er det afgørende at vide præcis den position, hvor disse vektorer integreret. LAM-PCR har vist sig at være overlegen i forhold til alternative teknikker som ligatur-medieret PCR 7 og dens varianter eller omvendt PCR 8. Følsomheden og robusthed denne metode hidrører fra første forstærkertrinene af vektor-genom kryds og magnetisk udvælgelse af amplificerede PCR-produkter. Ligesom de alternative metoder, der er nævnt, LAM-PCR bygger på anvendelsen af restriktionsenzymer, indførelse af en skævhed i hentning kapacitet IS 9-11. Såledeskun en delmængde af IS repertoiret (det integrome) kan detekteres i en reaktion. Denne skævhed er minimeret ved den parallelle analyse af en given prøve at bruge optimale kombinationer af restriktionsenzymer 9. For nylig, en variant af teknologien betegnes ikke-begrænsende LAM-PCR (nrLAM-PCR) er blevet udviklet, omgår anvendelsen af restriktionsenzymer og tillader objektiv genom-dækkende analyse af en prøve i en enkelt reaktion 9,12.

I fortiden, har LAM-PCR er blevet brugt til at identificere den sygdomsfremkaldende retroviral giver anledning til leukæmi hos nogle få patienter i kliniske forsøg med genterapi 13-15. Siden da har LAM-PCR er blevet tilpasset til at identificere IS fra andre integrerende vektorer (lentivirale vektorer, transposoner) og også til at identificere integration mønstre af passivt integrere vektorer som adenoassocierede vektorer (AAV) eller integrase defekt lentivirusvektorer (IDLV) 16 -21. Anvendelser af LAM-PCR er udbredt: traditionelly, er teknikken udbredt til at studere klonal sammensætning af gen modificerede celler hos patienter, der har gennemgået genterapi eller vurdere biosikkerhed af nye vektorsystemer ved optrevling deres integration adfærd 15,16,22-24. For nylig LAM-PCR aktiveret bestemme specificitet og off-target aktivitet designer nucleaser ved en IDLV fældefangst assay 25.

Desuden LAM-PCR gør det muligt at nemt følge skæbnen for en transduceret celle over tid i en organisme. Dette gør det muligt at identificere protoonkogener samt tumorsuppressorgener og også til at studere hæmatopoiese eller cancer stamcellebiologi 26-28. Sidst men ikke mindst, er LAM-PCR tilpasset til at undersøge T-celle-receptor mangfoldighed i mennesker 29 (og upublicerede data).

Den iboende kraft af teknologien er forstærket ved at knytte den metode til dyb sekventering teknologier, der tillader karakterisere millioner af ukendte flankerende DNA med en enkelt nukleotid resolution i hele genomer. I det følgende protokol beskriver vi trin-trin forstærkning og identifikation af flankerende ukendt DNA eksemplarisk at identificere lentivirusvektor IS. Oligonukleotider, der anvendes i protokollen, er anført i tabel 1.. Ekstraherede DNA eller cDNA af enhver kilde kan anvendes som DNA-template for LAM-PCR og nrLAM-PCR.

Protocol

1. Fremstilling af Linker Kassetter (LC) Bland 40 pi LC1 oligonukleotid (tabel 1), 40 pi LC2 oligonukleotid (tabel 1 med passende restriktionsenzym overhæng), 110 pi Tris-HCI (100 mM, pH 7,5) og 10 pi 250 mM MgCl2. Inkuber ved 95 ° C i 5 min og lad reaktionsblandingen afkøle langsomt til stuetemperatur. Tilsæt 300 ul H2O og koncentrere dsLinker-DNA på en centrifugering filter. Tilføj 80 pi H 2 O til eluatet og alikvote 10 ul af…

Representative Results

LAM-PCR resulterer i opformering af vektorgenom vejkryds med en defineret fragment størrelse for hver krydset. Størrelsen af ​​individuelle PCR-fragmenter er afhængig af afstanden mellem placeringen af ​​kendte DNA i genomet, og den nærmeste restriktionsenzym genkendelsessted. Dette gør det muligt at visualisere de forskellige amplificerede kryds i analyserede prøver ved hjælp af gelelektroforese, f.eks. Hvis kun single (monoklonale), flere (oligoclonal) eller flere (polyklonale) bånd er til ste…

Discussion

LAM-PCR teknik tillader at identificere ukendte DNA-sekvenser, der flankerer en kendt DNA-region. På grund af den høje følsomhed som følge af forforstærkning af kryds med specifikke primere, der hybridiserer i kendte DNA-sekvens, er det muligt at amplificere og påvise selv sjældne kryds ned til enkelt celle niveau. Derimod er der i et polyklonalt situation, LAM-PCR er i stand til at forstærke tusindvis af forskellige knudepunkter i en enkelt reaktion.

, På grund af anvendelsen af ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Funding was provided by the Deutsche Forschungsgemeinschaft (SPP1230, grant of the Tumor Center Heidelberg/Mannheim), by the Bundesministerium für Bildung und Forschung (iGene), by the VIth + VIIth Framework Programs of the European Commission (CONSERT, CLINIGENE and PERSIST). We thank Ina Kutschera for demonstrating the protocol technique in the video.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Taq DNA Polymerase Genaxxon Bioscience GmbH M3001.5000 Alternative Taq Polymerases may be used
PCR Buffer Qiagen 201203 Use of this buffer is recommended
dNTP-Mixture Genaxxon Bioscience GmbH M3015.4020 or any other dNTPs
Oligonucleotides (Primers) MWG Biotech HPLC purified
Dynabeads M-280 Streptavidin  Invitrogen 11206D
PBS Gibco 14190-086 0.1 % wt/vol BSA
6M LiCl Roth 3739.1 10 mM Tris-HCl  (pH 7.5)/1 mM EDTA
Tris-HCl, pH 7.5 USB Corporation  22637 or any other supplier
EDTA Applichem A1103,0250 or any other supplier
Klenow Polymerase Roche Diagnostics 10104523001
Hexanucleotide mixture Roche Diagnostics 11277081001
Restriction endonuclease NEB or any other supplier
Fast-Link DNA ligation kit Epicentre Biotechnologies LK11025
CircLigase ssDNA Ligase Kit Epicentre Biotechnologies CL4111K
NaOH Sigma-Aldrich 72068 or any other supplier
Agarose LE Roche Diagnostics 11685660001 or any other supplier
TBE buffer Amresco 0658 or any other supplier
Ethidium bromide Applichem A2273,0005 Ethidium bromide is mutagenic
100 bp DNA Ladder Invitrogen 15628-050 or any other DNA ladder
20 mM NaCl Sigma-Aldrich 71393-1L or any other supplier
Magna-Sep Magnetic Particle Separator  Life Technologies K158501 for use with 1.5 ml Tubes
Magna-Sep Magnetic Particle Separator  Life Technologies K158696 for use with 96 well plates
Amicon Ultra-0.5, Ultracel-30 membrane Millipore UFC503096
PerfectBlue Gelsystem Midi S PeqLab 40-1515 or other electrophoresis system 
TProfessional 96 Biometra 050-551 or other Thermocycler for 96-well plates
Orbital shaker KS 260 basic IKA 2980200 or other horizontal shaker
PCR softtubes 0.2 ml Biozym Scientific GmbH 711082 or other 0.2 ml PCR tubes
1.5 ml tubes Eppendorf 12682 or other 1.5 ml tubes
Gel documentation system PeqLab or any other gel documentation system
Nanodrop ND-1000 spectrophotometer Thermo Scientific ND-1000
Spreadex EL1200 precast gel Elchrom Scientific 3497
Submerged gel electrophoresis apparatus SEA 2000  Elchrom Scientific 2001E
2100 Electrophoresis Bioanalyzer Agilent Technologies G2939AA

References

  1. Schmidt, M., et al. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum Gene Ther. 12, 743-749 (2001).
  2. Schmidt, M., et al. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods. 4, 1051-1057 (2007).
  3. Schroeder, A. R., et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 110, 521-529 (2002).
  4. Wu, X., Li, Y., Crise, B., Burgess, S. M. Transcription start regions in the human genome are favored targets for MLV integration. Science. 300, 1749-1751 (2003).
  5. Vigdal, T. J., Kaufman, C. D., Izsvak, Z., Voytas, D. F., Ivics, Z. Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol. 323, 441-452 (2002).
  6. Lewinski, M. K., et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog. 2, (2006).
  7. Mueller, P. R., Wold, B. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science. 246, 780-786 (1989).
  8. Silver, J., Keerikatte, V. Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. Journal of virology. 63, 1924-1928 (1989).
  9. Gabriel, R., et al. Comprehensive genomic access to vector integration in clinical gene therapy. Nature medicine. 15, 1431-1436 (2009).
  10. Harkey, M. A., et al. Multiarm high-throughput integration site detection: limitations of LAM-PCR technology and optimization for clonal analysis. Stem Cells Dev. 16, 381-392 (2007).
  11. Wang, G. P., et al. DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer. Nucleic acids research. 36, (2008).
  12. Paruzynski, A., et al. Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat. Protocols. 5, 1379-1395 (2010).
  13. Hacein-Bey-Abina, S., et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. , 3132-3142 (2008).
  14. Hacein-Bey-Abina, S., et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 302, 415-419 (2003).
  15. Howe, S. J., et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 118, 3143-3150 (2008).
  16. Cartier, N., et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 326, 818-823 (2009).
  17. Matrai, J., et al. Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk. Hepatology. 53, 1696-1707 (2011).
  18. Penaud-Budloo, M., et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. Journal of virology. 82, 7875-7885 (2008).
  19. Kaeppel, C., et al. A largely random AAV integration profile after LPLD gene therapy. Nature medicine. 19, 889-891 (2013).
  20. Voigt, K., et al. Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol Ther. 20, 1852-1862 (2012).
  21. Yanez-Munoz, R. J., et al. Effective gene therapy with nonintegrating lentiviral vectors. Nature medicine. 12, 348-353 (2006).
  22. Boztug, K., et al. Stem-Cell Gene Therapy for the Wiskott-Aldrich Syndrome. N Engl J Med. 363, 1918-1927 (2010).
  23. Deichmann, A., et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest. 117, 2225-2232 (2007).
  24. Schwarzwaelder, K., et al. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest. 117, 2241-2249 (2007).
  25. Gabriel, R., et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 29, 816-823 (2011).
  26. Dieter, S. M., et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell. 9, 357-365 (2011).
  27. Montini, E., et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nature biotechnology. 24, 687-696 (2006).
  28. Zavidij, O., et al. Stable long-term blood formation by stem cells in murine steady-state hematopoiesis. Stem Cells. 30, 1961-1970 (2012).
  29. Martins, V. C., et al. Thymus-autonomous T cell development in the absence of progenitor import. J Exp Med. 209, 1409-1417 (2012).
  30. Arens, A., et al. Bioinformatic clonality analysis of next-generation sequencing-derived viral vector integration sites. Hum Gene Ther Methods. 23, 111-118 (2012).
check_url/51543?article_type=t

Play Video

Cite This Article
Gabriel, R., Kutschera, I., Bartholomae, C. C., von Kalle, C., Schmidt, M. Linear Amplification Mediated PCR – Localization of Genetic Elements and Characterization of Unknown Flanking DNA. J. Vis. Exp. (88), e51543, doi:10.3791/51543 (2014).

View Video