Summary

Controllata corticale modello Impact per trauma cranico

Published: August 05, 2014
doi:

Summary

Traumatic brain injuries (TBIs) remain a serious health problem. Using the controlled cortical impact surgery model, research on the effects of TBI and possible treatment methods may be performed.

Abstract

Every year over a million Americans suffer a traumatic brain injury (TBI). Combined with the incidence of TBIs worldwide, the physical, emotional, social, and economical effects are staggering. Therefore, further research into the effects of TBI and effective treatments is necessary. The controlled cortical impact (CCI) model induces traumatic brain injuries ranging from mild to severe. This method uses a rigid impactor to deliver mechanical energy to an intact dura exposed following a craniectomy. Impact is made under precise parameters at a set velocity to achieve a pre-determined deformation depth. Although other TBI models, such as weight drop and fluid percussion, exist, CCI is more accurate, easier to control, and most importantly, produces traumatic brain injuries similar to those seen in humans. However, no TBI model is currently able to reproduce pathological changes identical to those seen in human patients. The CCI model allows investigation into the short-term and long-term effects of TBI, such as neuronal death, memory deficits, and cerebral edema, as well as potential therapeutic treatments for TBI.

Introduction

Lesione cerebrale traumatica (TBI) è definita come una alterazione nella funzione del cervello, o altro titolo di patologia cerebrale, causata da una forza esterna 1. TBIs rimangono un grave problema di salute in tutto il mondo, in particolare negli Stati Uniti. Secondo i Centers for Disease Control and Prevention, almeno 1,7 milioni di TBI si verificano ogni anno negli Stati Uniti con conseguente 30,5% di tutti i decessi lesioni correlate. Nel 2000, i costi medici diretti e costi indiretti di TBI ammontano a una cifra stimata 76,5 miliardi dollari nei soli Stati Uniti. Nonostante i progressi tecnologici e terapeutici in decenni precedenti hanno migliorato la qualità e la durata della vita per chi soffre di TBI, non farmaceutica efficace o trattamenti preventivi esistono attualmente. A causa della complessità e effetti di vasta portata di TBI, comprese lesioni tessutali, morte cellulare e degenerazione dell'assone, non esistono due ferite sono identici; quindi, nessun modello TBI corrente per gli animali riproduce fedelmentetutti gli aspetti della TBI come si è visto negli esseri umani. Tuttavia, i modelli animali forniscono la capacità di produrre danni quasi identici necessari per indagare i vari effetti di TBI con la speranza di comprendere ulteriormente le manifestazioni cliniche della TBI.

L'impatto corticale (CCI) modello controllato utilizza un sistema di impatto per fornire impatto fisico a dura esposta di un animale. Induce TBI che vanno da lievi a gravi simili a quelle sperimentate dagli esseri umani. Questa lesione è stato caratterizzato nella furetto 2 ed è stato successivamente adattato per l'uso nel ratto 3,4, mouse 5-7, pecore e 8. Poiché la prima caratterizzazione, il sito della lesione è stato posto sia sulla linea mediana 2,9 e la corteccia laterale 10. CCI fornisce un metodo semplice e preciso di indagare gli effetti e trattamenti potenziali per TBI.

Oltre al modello CCI, la percussione fluido e peso goccia modelli sono commonly utilizzato per produrre TBI. Tuttavia, questi modelli limitazioni presenti, tra cui un minore controllo sui parametri di pregiudizio, producendo cambiamenti histopathalogical non si vedono in TBIs umano e una maggiore incidenza di morte accidentale nei topi 3,5,10. Il modello di onda d'urto è utilizzato anche per la produzione di TBI. Anche se il modello di onda d'urto non riproduce le modifiche histopathalogical osservati a seguito di un impatto meccanico, questo modello non produce esattamente TBIs vissute in particolare da personale militare 11. Il modello controllato impatto corticale è facile da controllare a causa del controllo preciso su parametri di deformazione come il tempo, la velocità e la profondità di impatto 5. Tale precisione consente di replicare le lesioni quasi identici in un intero gruppo di animali più fattibile. Soprattutto, CCI riproduce TBIs con le caratteristiche viste in TBIs umano 12. Tuttavia, non esiste un modello unico animale che è del tutto riuscito a riprodurre la gamma completa di patologico chanGES si osservano dopo il trauma cranico. Ulteriori ricerche sono necessarie per rivelare pienamente le modifiche acute e croniche che si verificano dopo TBI.

Due tipi di lesioni si verificano in seguito a un trauma cranico: le lesioni primarie e secondarie. La lesione primaria si verifica al momento dell'impatto e non è sensibile ai trattamenti terapeutici; tuttavia, le lesioni secondarie che persistono dopo la lesione iniziale vengono sottoposti a trattamenti 13. Il modello controllato impatto corticale produce la lesione primaria, permettendo così ai ricercatori di indagare gli effetti del trauma cranico e potenziali trattamenti terapeutici per i potenziali effetti di lunga durata di lesioni secondarie. Aree di potenziale di ricerca utilizzando il modello di CCI sono morte neuronale, edema cerebrale, neurogenesi, effetti vascolari, i cambiamenti histopathalogical e deficit di memoria e più 3,13-16.

Protocol

Animal Care Maschile C57 BL / 6 topi erano alloggiato in gruppo e conservati in 12/12 ore di luce / buio ciclo con libero di accedere a cibo e acqua ad libitum. Gli animali utilizzati in questo protocollo sono di 10-12 settimane di età. Tutte le procedure sono state eseguite secondo protocolli approvati dalla cura degli animali e uso commissione di Indiana University. 1. Preparazione chirurgica Anestetizzare il mouse usando una miscela di ketamina / xilazina (87,7…

Representative Results

Il modello di impatto corticale controllata produce TBI variano in gravità da lieve a grave. Post-impatto la quantità di gonfiore cranico, emorragia, e la distorsione cranica nel sito di impatto riveleranno la gravità del pregiudizio derivante dai parametri di velocità e profondità di deformazione. TBI Lieve producono gonfiore cranica presso il sito di impatto e leggero sanguinamento dovuto alla violazione durata limitata. Un trauma cranico moderato presenta gonfiore cranica e aumentato sanguinamento dovuto alla du…

Discussion

Le fasi più critiche per la generazione di successo TBIs coerenti con un sistema elettronico di impatto magnete di causare una CCI sono: 1) stabilmente fissa la testa del mouse nel frame stereotassico; 2) generare la stessa dimensione della finestra ossea tra topi e rimuovendo l'osso senza danneggiare la dura sotto in caso craniectomy; 3) posizionare correttamente la punta impatto nel centro della zona aperta e fissazione del punto zero prima di colpire.

Una testa mouse deve essere fiss…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato sostenuto da un finanziamento della Cord Indiana spinale & Brain Injury Research Grants (SCBI 200-12), Ralph W. e Grazia M. Showalter Research Award, Indiana University ricerca biologica Grant, NIH sovvenzioni RR025761 e 1R21NS072631-01A.

Materials

Povidone-iodine 7.5% Purdue product L.P. Surgical scrub
Cotton tipped applicators Henry Schein 100-6015 Remove blood and debris
scissor Fine Science Tools 14084-08 Surgery
forcept Fine Science Tools 11293-00 Surgery
hemostat Fine Science Tools 13021-12 Surgery
Rechargeable Cordless Micro Drill Stoelting 58610 Combine with Burrs for generating the bone window
Burrs for Micro Drill Fine Science Tools 19007-05
Suture monofilament Ethicon G697 Suture
tert-Amyl alcohol Sigma 152463-250ML Making 2.5% Avertin
2,2,2-Tribromoethanol Sigma T48402-25G Making 2.5% Avertin

Riferimenti

  1. Menon, D. K., Schwab, K., et al. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 91 (11), 1637-1640 (2010).
  2. Lighthall, J. W., Dixon, C. E., et al. Experimental models of brain injury. J Neurotrauma. 6 (2), 83-97 (1989).
  3. Dixon, C. E., Clfton, G. L., et al. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods. 39 (3), 253-262 (1991).
  4. Scheff, S. W., Baldwin, S. A., et al. Morris water maze deficits in rats following traumatic brain injury: lateral controlled cortical impact. J Neurotrauma. 14 (9), 615-627 (1997).
  5. Smith, D. H., Soares, H. D., et al. A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma. 12 (2), 169-178 (1995).
  6. Hannay, H. J., Feldman, Z., et al. Validation of a controlled cortical impact model of head injury in mice. J Neurotrauma. 16 (11), 1103-1114 (1999).
  7. Natale, J. E., Ahmed, F., et al. Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J Neurotrauma. 20 (10), 907-927 (2003).
  8. Anderson, R. W., Brown, C. J., et al. Impact mechanics and axonal injury in a sheep model. J Neurotrauma. 20 (10), 961-974 (2003).
  9. Lighthall, J. W. Controlled cortical impact: a new experimental brain injury model. J Neurotrauma. 5 (1), 1-15 (1988).
  10. Chen, S., Pickard, J. D., et al. Time course of cellular pathology after controlled cortical impact injury. Exp Neurol. 182 (1), 87-102 (2003).
  11. Long, J. B., Bentley, T. L., et al. Blast overpressure in rats: recreating a battlefield injury in the laboratory. J Neurotrauma. 26 (6), 827-840 (2009).
  12. Clark, R. S., Schiding, J. K., et al. Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact models. J Neurotrauma. 11 (5), 499-506 (1994).
  13. Werner, C., Engelhard, K. Pathophysiology of traumatic brain injury. Br J Anaesth. 99 (1), 4-9 (2007).
  14. Colicos, M. A., Dixon, C. E., et al. Delayed, selective neuronal death following experimental cortical impact injury in rats: possible role in memory deficits. Brain Res. 739 (1-2), 111-119 (1996).
  15. Raghavendra Rao, V. L., Dogan, A., et al. Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol. 161 (1), 102-114 (2000).
  16. Gao, X., Chen, J. Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus. Exp Neurol. 239, 38-48 (2013).

Play Video

Citazione di questo articolo
Romine, J., Gao, X., Chen, J. Controlled Cortical Impact Model for Traumatic Brain Injury. J. Vis. Exp. (90), e51781, doi:10.3791/51781 (2014).

View Video