Summary

跨膜蛋白的重组,电压门控离子通道,KvAP,进入巨人单层囊的显微镜和膜片钳研究

Published: January 22, 2015
doi:

Summary

跨膜蛋白,KvAP,变成巨大的单层囊泡(GUVs)的重组被证明两脱水补液方法 – electroformation和凝胶辅助肿胀。在两种方法中,将含有蛋白的小单层囊泡融合在一起,以形成可以随后通过荧光显微镜和膜片钳电生理学来研究GUVs。

Abstract

巨人单层囊泡(GUVs)是一种流行的仿生系统研究膜相关现象。然而,通常使用的协议来生长GUVs必须为了形成含有官能跨膜蛋白GUVs进行修改。本文介绍了两种脱水 – 再水化方法 – electroformation和凝胶辅助肿胀 – 以形成含有所述电压 – 门控钾通道,KvAP GUVs。在两种方法中,对含有蛋白质的小单层囊泡的溶液是部分脱水,形成一个叠层膜,然后使其在再水化缓冲液溶胀。为electroformation方法,所述膜沉积在铂电极以使得AC场可以在膜补液施加。与此相反,凝胶溶胀辅助方法使用琼脂糖凝胶基质,以提高膜补液。这两种方法都可以产生在低( 例如,5毫米)和生理( 例如,100毫摩尔)的盐浓度GUVs。所得GUVs的特征在于通过荧光显微镜,和使用该内面向外膜片钳构造重构信道的函数进行测量。而以交替的电场(electroformation)的存在下溶胀得到高产率的无缺陷GUVs,凝胶辅助溶胀方法产生更均匀的蛋白质的分布,不需要特殊的设备。

Introduction

当研究支配生命系统的物理原理,自下而上途径允许一个实验,以控制系统的组成和不容易在基于细胞的系统1操作的其他参数。为基于膜的工艺,巨单层囊泡(GUVs,直径〜1-100微米)已被证明是一种非常有用的仿生系统2 – 7,因为它们非常适合于显微镜研究和显微8 – 10。虽然有许多不同的协议来产生GUVs,最分为两类-基乳液方法的基础上再水化脂质膜13 11,12和技术– 16。在乳化液为基础的方法中,GUV膜的内,外小叶被依次从脂质单层在水/油界面组装。这种方法适用于封装可溶性蛋白与在GUVs,和用于形成GUVs不对称小叶脂质组合物。然而,从乳液形成GUVs可以保留的痕量溶剂是改变膜的机械特性17,并且该方法不特别适合于跨膜蛋白重建。

膜补液方法依赖于以下事实干燥(脱水)导致许多脂类混合物以形成膜的多片层堆栈。如果此堆栈,然后放置在接触含水缓冲液,在叠层膜会移动它们之间,并在该叠层的表面分开为溶剂流动,个别膜可以分离,以形成GUVs 13,18(以及一个真正的动物园其它脂质对象)。然而,即使是对于最佳缓冲液和脂质组合物,这种典型的“自发溶胀”的方法具有相对低的无缺陷GUVs收率。一种广泛使用的方法,以提高无缺陷GUVs收率“electroformation221 ;,在其中交变电流(AC)场期间膜补液施加。而该机制仍然知之甚少,“electroformation”可以给予壮观GUV产率(>在有利的情况下,90%)为低盐浓度缓冲液(<5毫米)14,19,并且甚至可以在生理缓冲液的工作(约100毫米)使用较高的频率(500赫兹与10赫兹)的交流场和铂电极15。另一种方法,以促进无缺陷GUVs收率是“凝胶辅助肿胀”,其中的脂质溶液沉积在聚合物凝胶基质,而不是被动用于古典“自发溶胀( 例如 ,玻璃,聚四氟乙烯)基底“。当所得到的脂质/凝胶膜再水化,GUVs能迅速形成,即使对于生理缓冲器16,20。

所有这些方法都可以产生可用于研究膜相关的现象,如脂质仅GUVs可溶性蛋白和膜之间的相互作用。然而,掺入跨膜蛋白进入GUVs,需要显著修改,以确保该蛋白质保持在功能状态在整个重构过程。而在有机溶剂( 例如,氯仿环己烷)脂质的解决方案非常适合用于制造脂质膜,跨膜蛋白是典型地仅当稳定它们的疏水跨膜结构域被嵌入脂质双层,或由洗涤剂胶束包围( 例如,在蛋白质纯化)。因此,对于一重建的起始材料通常是由洗涤剂去除在形成的天然的膜,在洗涤剂溶液中纯化的蛋白质,或小单层含蛋白囊泡(PROTEO-越野车)和/或多层状囊泡(PROTEO-MLV的)存在脂质。大多数将这些膜蛋白进入GUVs方法分为三类。

直接InsertioN:跨膜蛋白悬浮在洗涤剂与预成形的,脂质-只,轻度清洁剂溶解的GUVs混合,并且将洗涤剂然后使用biobeads 21除去。而概念简单,这种方法需要的洗涤剂浓度的精确控制,因为太高的洗涤剂浓度可以溶解而过低的浓度可导致蛋白质折叠或聚集的GUVs。

GUV / PROTEO-SUV的融合:蛋白质在PROTEO-SUV的组合与预成形的,脂质-仅GUVs和融合促进了与特殊膜融合肽2221的洗涤剂。典型地融合的程度有限,导致GUVs具有低蛋白质浓度。

脱水/再水化:包含蛋白质 – 类脂膜通过PROTEO-SUV的部分脱水(或PROTEO-MLV)溶液和GUVs形成然后生长作为用于纯脂质膜。明显的挑战是局部dehydrati期间保护蛋白质关于步骤23中 ,但该方法已被成功地用于重组跨膜蛋白,如细 ​​菌视紫红质,钙ATP酶,整合和VDAC成GUVs 7,23 – 25。

本文介绍的脱水/再水化协议,使含有该电压-门控钾通道,KvAP,从超嗜热古菌, 嗜pernix GUVs。KvAP具有高度的同源性,以真核电压依赖性钾通道26和一个公知的晶体结构27 ,使其成为一个很好的模型来研究电压门控的机制。生产PROTEO-SUV的已详细描述以前,不是本教程26,28,29的一部分。重要的是,KvAP PROTEO-SUV的不必要产生的每个GUV制剂,因为它们可以被存储在小( 例如,10微升)等分在-80℃下延长的时间段(> 1年)。 Electroformation或凝胶辅助溶胀然后可用于从KvAP PROTEO-SUV的生长GUVs(或PROTEO-MLV的)。

为electroformation协议的关键步骤被示于图1。含有蛋白质的SUV的溶液的液滴沉积在铂丝( 图2中示出)。在SUV的悬挂部分脱水导致通过的SUV的融合,形成脂质蛋白膜。期间补液,一个交流电场施加到电极上,以协助脂质层脱层并形成GUVs。 10赫兹场效果很好时,使用“低盐”(<5毫米)补液缓冲区28和GUVs需要几个小时才能成长。与此相反,生理缓冲液(含有〜100mM的盐)与一低电压,500赫兹AC场工作良好,但需要一个长期(〜12小时)肿胀周期15。此方法是基于使用ITO滑动24较早的协议,但是使用自定义腔室续癌宁两个铂丝, 如图2(见用于更简单的设计细节和建议的讨论中,即兴室)。

图3示出了凝胶辅助膨胀方法。该协议可以很好地缓冲生理食盐浓度,迅速,并且产生GUVs具有更均匀的蛋白质分布。然而,分离的,显然无缺陷GUVs收率( GUV膜是均匀的,在光学长度尺度,并且不括任何对象)较低,但它提供了足够数量的用于膜片钳和显微操作实验。此方法是基于使用琼脂糖凝胶,以产生脂质仅GUVs 16和需要更少的专门的设备比electroformation方法的协议。

GUVs用荧光显微镜的表征被描述,以及使用标准膜片钳设置到程序衡量KvAP活动“由内而外”切膜的补丁。

生长含蛋白GUVs可以比脂质仅GUVs更加困难。尤其是,最后的GUV收率上究竟如何在SUV溶液沉积和脱水以形成薄膜叠层灵敏依赖。有人未经任何以往的经验与GUVs,它可以是下面的其中隔膜是通过从有机溶剂沉积类脂形成的常规协议15,16到第一生长脂质仅GUVs很有帮助。一旦现有协议工作良好,SUV沉积和部分脱水然后可以使用脂质仅越野车,这也是非常有益的调整协议的新的脂质组合物时掌握。当GUVs脂质只SUV的可靠增长,它是那么只是一小步,产生含蛋白质GUVs从PROTEO-的SUV。

Protocol

1.溶液制备制备5ml含5mM的氯化钾,1mM的HEPES(pH 7.4)中或TRIS(pH为7.5),和2mM海藻糖'的SUV缓冲器“的。过滤用0.2微米的针筒式过滤器的缓冲器和分成可存储在-20℃1ml等分。 注:其他详细信息的试剂和仪器的材料清单给出。 准备40毫升GUV“成长缓冲”,这将填补室内GUV在电影补液。对于一个“低盐”的增长,结合的5mM的KCl,1mM的HEPES(pH 7.4)中或1mM的TRIS(pH为7.5)和〜400毫蔗?…

Representative Results

GUVs的生长可通过检查生长室,在显微镜下进行快速评估。对于electroformation,所述GUVs倾向于增长沿铂导线束, 如图4。在凝胶辅助肿胀,GUVs显示为球形的结构,可以快速成长,并融合在一起( 图5)。 无缺陷GUVs更容易识别和传送到一个​​观察室之后进行评价。需要校准测量来严格评价GUV质量,并且一个系统的量化先前已公布的28。然而,?…

Discussion

仿生模型系统用于研究蛋白质和膜的性能和相互作用的一个重要工具。相比像类脂膜或支持的脂质膜的其他重组系统,GUV基础的系统本数的机会,包括相当大的控制的膜组合物,紧张和几何形状,以及作为真正的无油。然而,掺入跨膜蛋白,如KvAP成GUVs需要常规的协议为脂质仅GUVs显著适应。这里介绍的electroformation协议是以前的特点,并用于研究在弯曲膜2,4,35膜蛋白的分布和动态变化的生?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank Susanne Fenz for discussing the possibility of reconstituting proteins by agarose swelling, Feng Ching Tsai for current measurements, and present and former members of the Bassereau group for support and assistance. The project was funded by the Agence Nationale de la Recherche (grant BLAN-0057-01), by the European Commission (NoE SoftComp), by the Université Pierre et Marie Curie (grant from the FED21, Dynamique des Systèmes Complexes). M.G. was supported by an Institut Curie International PhD Fellowship, S.A. by a fellowship from the Fondation pour la Recherche Médicale, G.E.S.T. by a Marie Curie Incoming International Fellowship from the European Commission and a grant from the Université Pierre et Marie Curie. The publication fees were covered by the Labex ‘CelTisPhyBio’ (ANR-11-LABX0038).

Materials

Name of the
Material/Equipment
Company Catalog Number Comments/ Description
DPhPC (1,2-diphytanoyl-sn-glycero-3-phosphocholine) Avanti Polar Lipids  850356P
Egg PC L-α-phosphatidylcholine (Egg, Chicken)  Avanti Polar Lipids  840051P
Egg PA L-α-phosphatidic acid (Egg, Chicken) Avanti Polar Lipids  840101P
18:1 (Δ9-Cis) PC (DOPC) 1,2-dioleoyl-sn-glycero-3-phosphocholine Avanti Polar Lipids  850375P
cholesterol (ovine wool, >98%)  Avanti Polar Lipids  700000P
TRed-DHPE Invirtogen T-1395MP labeled lipid
BPTR-Ceramide Invirtogen D-7540  labeled lipid
Choloroform VWR 22711.290 AnalaR Normapur
Acetone VWR 20066.296 AnalaR Normapur
Ethanol VWR 20821.330 AnalaR Normapur
Kimwipe Kimtech 7552
Hamilton syringes  Hamilton Bonaduz AG diverse
Amber vials and teflon cups Sigma SU860083 and SU860076
Parafilm VWR 291-1214
microcentrifuge tube eppendorf diverse
Agarose Euromex LM3 (1670-B, Tg 25.7C, Tm 64C)
Sucrose Sigma 84097-1kg
Glucose  Sigma G8270-1kg
Trehalose Sigma T9531-25G
KCl Sigma P9333-1kg
Hepes Sigma H3375-100G
TRIS Euromex EU0011-A
Osmometer Wescor Vapro
pH meter Schott instruments Lab850
Sonicator Elmasonic S 180 H
Syringe filter 0.2µm Sartorius steim Minisart 16532
Function generator TTi TG315
Platinum wires Goodfellow LS413074 99.99+%, d=0.5mm
Polytetrafluoroethylene Goodfellow
Dow Corning 'high vacuum grease' VWR 1597418
sealing paste Vitrex medical A/S, Denmark REF 140014 Sigillum Wax
Cover slides 22×40 mm No1,5 VWR  631-0136
Cover slides 22×22 mm No1,5 VWR  631-0125
plasma cleaner Harrick PDC-32G airplasma, setting 'high'
petri dishes Falcon BD REF 353001 3.5 cmx1cm
patch clamp amplifier Axon instruments Multiclamp700B
DAQ Card National Instruments PCI-6221
Labview National Instruments version 8.6
Glass pipettes boro silicate OD 1mm ID 0.58mm Harvard Apparatus GC100-15
Electrode holder Warner Instruments  Q45W-T10P
Micromanipulator Sutter  MP-285
pipette puller Sutter  P-2000 
Camera ProSilica  GC1380
Zeiss microscope Zeiss Axiovert 135
Objective Zeiss 40x long working distance, Phase contrast
Objective  Zeiss 100x Plan-Apochromat NA 1.3
Filterset GFP (for Alexa-488) Horiba XF100-3
Filterset Cy3 (for TexasRed) Horiba XF101-2
beta-casein Sigma  C6905-1G
confocal microscope Nikon Eclipse TE 2000-E D-Eclipse C1 confocal head
Objective Nikon Plan Fluor 100× NA1.3
matlab Mathworks for image processing and analysis of the current traces

Riferimenti

  1. Schwille, P. Bottom-Up Synthetic Biology: Engineering in a Tinkerer’s World. Science. 333 (6047), 1252-1254 (2011).
  2. Aimon, S., et al. Membrane Shape Modulates Transmembrane Protein Distribution. Developmental Cell. 28 (2), 212-218 (2014).
  3. Roux, A., et al. Membrane curvature controls dynamin polymerization. Proceedings of the National Academy of Sciences. 107 (9), 4141-4146 (2010).
  4. Domanov, Y. A., et al. Mobility in geometrically confined membranes. Proceedings of the National Academy of Sciences. 108 (31), 12605 (2011).
  5. Sorre, B., et al. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proceedings of the National Academy of Sciences. 106 (14), 5622-5626 (2009).
  6. Faris, M. D. E. A., et al. Membrane Tension Lowering Induced by Protein Activity. Physical Review Letters. 102 (3), 038102 (2009).
  7. Streicher, P., et al. Integrin reconstituted in GUVs: A biomimetic system to study initial steps of cell spreading. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1788 (10), 2291-2300 (2009).
  8. Walde, P., Cosentino, K., Engel, H., Stano, P. Giant Vesicles: Preparations and Applications. ChemBioChem. 11 (7), 848-865 (2010).
  9. Liu, A. P., Fletcher, D. A. Biology under construction: in vitro reconstitution of cellular function. Nature Reviews Molecular Cell Biology. 10 (9), 644-650 (2009).
  10. Sens, P., Johannes, L., Bassereau, P. Biophysical approaches to protein-induced membrane deformations in trafficking. Current Opinion in Cell Biology. 20 (4), 476-482 (2008).
  11. Pautot, S., Frisken, B. J., Weitz, D. A. Production of Unilamellar Vesicles Using an Inverted Emulsion. Langmuir. 19 (7), 2870-2879 (2003).
  12. Stachowiak, J. C., et al. Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proceedings of the National Academy of Sciences. 105 (12), 4697-4702 (2008).
  13. Reeves, J. P., Dowben, R. M. Formation and properties of thin-walled phospholipid vesicles. Journal of Cellular Physiology. 73 (1), 49-60 (1969).
  14. Angelova, M. I., Soléau, S., Méléard, P., Faucon, F., Bothorel, P. Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Trends in Colloid and Interface Science VI. 89, 161-176 (1992).
  15. Bagatolli, L. A., Pott, T. Giant Unilamellar Vesicle Electroformation. Methods in Enzymology. 465, 161-176 (2009).
  16. Horger, K. S., Estes, D. J., Capone, R., Mayer, M. Films of Agarose Enable Rapid Formation of Giant Liposomes in. Solutions of Physiologic Ionic Strength. Journal of the American Chemical Society. 131 (5), 1810-1819 (2009).
  17. Campillo, C., et al. Unexpected Membrane Dynamics Unveiled by Membrane Nanotube Extrusion. Biophysical Journal. 104 (6), 1248-1256 (2013).
  18. Kwok, R., Evans, E. Thermoelasticity of large lecithin bilayer vesicles. Biophysical Journal. 35 (3), 637-652 (1981).
  19. Mathivet, L., Cribier, S., Devaux, P. F. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. Biophysical Journal. 70 (3), 1112-1121 (1996).
  20. Weinberger, A., et al. Gel-Assisted Formation of Giant Unilamellar Vesicles. Biophysical Journal. 105 (1), 154-164 (2013).
  21. Dezi, M., Di Cicco, A., Bassereau, P., Levy, D. Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents. Proceedings of the National Academy of Sciences. 110 (18), 7276-7281 (2013).
  22. Kahya, N., Pecheur, E. I., de Boeij, W. P., Wiersma, D. A., Hoekstra, D. Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion. Biophysical Journal. 81 (3), 1464-1474 (2001).
  23. Doeven, M. K., et al. Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophysical Journal. 88 (2), 1134-1142 (2005).
  24. Girard, P., Prost, J., Bassereau, P. Passive or Active Fluctuations in Membranes Containing Proteins. Physical Review Letters. 94 (8), 088102 (2005).
  25. Betaneli, V., Petrov, E. P., Schwille, P. The Role of Lipids in VDAC Oligomerization. Biophysical Journal. 102 (3), 523-531 (2012).
  26. Ruta, V., Jiang, Y., Lee, A., Chen, J., MacKinnon, R. Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature. 422 (6928), 180-185 (2003).
  27. Jiang, Y., et al. X-ray structure of a voltage-dependent K+ channel. Nature. 423 (6935), 33-41 (2003).
  28. Aimon, S., et al. Functional Reconstitution of a Voltage-Gated Potassium Channel in Giant Unilamellar Vesicles. PLoS ONE. 6 (10), e25529 (2011).
  29. Lee, S., Zheng, H., Shi, L., Jiang, Q. -. X. Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies. Journal of Visualized Experiments. (77), (2013).
  30. Baykal-Caglar, E., Hassan-Zadeh, E., Saremi, B., Huang, J. Preparation of giant unilamellar vesicles from damp lipid film for better lipid compositional uniformity. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1818 (11), 2598-2604 (2012).
  31. Suchyna, T. M., Markin, V. S., Sachs, F. Biophysics and Structure of the Patch and the Gigaseal. Biophysical Journal. 97 (3), 738-747 (2009).
  32. Hille, B. . Ion Channels of Excitable Membranes. , (2001).
  33. Finol-Urdaneta, R. K., McArthur, J. R., Juranka, P. F., French, R. J., Morris, C. E. Modulation of KvAP unitary conductance and gating by 1-alkanols and other surface active agents. Biophysical journal. 98 (5), 762-772 (2010).
  34. Schmidt, D., MacKinnon, R. Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane. Proceedings of the National Academy of Sciences. 105 (49), 19276-19281 (2008).
  35. Quemeneur, F., et al. Shape matters in protein mobility within membranes. Proceedings of the National Academy of Sciences of the United States of America. , (2014).
  36. Parc, A. L., Leonil, J., Chanat, E. αS1-casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly membrane-associated form. BMC Cell Biology. 11 (1), 1-15 (2010).
  37. Garten, M., Toombes, G. E. S., Aimon, S., Bassereau, P. Studying Voltage Dependent Proteins with Giant Unilamellar Vesicles in a “Whole Cell” Configuration. Biophysical Journal. 104 (2), 466a (2013).
  38. Crowe, L. M., Reid, D. S., Crowe, J. H. Is trehalose special for preserving dry biomaterials. Biophysical Journal. 71 (4), 2087-2093 (1996).
check_url/it/52281?article_type=t

Play Video

Citazione di questo articolo
Garten, M., Aimon, S., Bassereau, P., Toombes, G. E. S. Reconstitution of a Transmembrane Protein, the Voltage-gated Ion Channel, KvAP, into Giant Unilamellar Vesicles for Microscopy and Patch Clamp Studies. J. Vis. Exp. (95), e52281, doi:10.3791/52281 (2015).

View Video