Summary

Mønster via optisk mættede Transitions - fremstilling og karakterisering

Published: December 11, 2014
doi:

Summary

We report that the diffraction limit of conventional optical lithography can be overcome by exploiting the transitions of organic photochromic derivatives induced by their photoisomerization at low light intensities.1-3 This paper outlines our fabrication technique and two locking mechanisms, namely: dissolution of one photoisomer and electrochemical oxidation.

Abstract

This protocol describes the fabrication and characterization of nanostructures using a novel nanolithographic technique called Patterning via Optical Saturable Transitions (POST). In this technique the chemical properties of organic photochromic molecules that undergo single-photon reactions are exploited, enabling rapid top-down nanopatterning over large areas at low light intensities, thereby, allowing for the circumvention of the far-field diffraction barrier.4 Simple, cost-effective, high throughput and resolution alternatives to nanopatterning are being explored, such as, two-photon polymerization5,6, beam pen lithography (BPL)7, scanning electron beam lithography (SEBL), and focused ion beam (FIB) patterning. However, multi-photon approaches require high light intensities, which limit their potential for high throughput and offer low image contrast. Although, electron and ion beam lithographic processes offer increased resolution, the serial nature of the process is limited to slow writing speeds, which also prevents patterning of features over large areas. Beam-pen lithography is an approach towards parallel near-field optical lithography. However, the gap between the source of the beam and the surface of the photoresist needs to be controlled extremely precisely for good pattern uniformity and this is very challenging to accomplish for large arrays of beams. Patterning via Optical Saturable Transitions (POST) is an alternative optical nanopatterning technique for patterning sub-wavelength features1-3. Since this technique uses single photons instead of electrons, it is extremely fast and does not require high light intensities1-3, opening the door to massive parallelization.

Introduction

Optisk litografi er af afgørende betydning i fremstillingen af ​​nanoskala strukturer og enheder. Øget fremskridt i nye litografiteknikker har evnen til at gøre det muligt for nye generationer af nye enheder. 8-11 i denne artikel, en gennemgang præsenteres af en klasse af optiske litografiske teknikker, som opnår dyb sub-bølgelængde opløsning ved hjælp af nye photoswitchable molekyler. Denne tilgang kaldes mønster via optisk umættet Overgange (POST). 1-3

POST er en hidtil ukendt nanofabrikation teknik, der unikt kombinerer ideer mætte optiske overgange i fotokrome molekyler, især (1,2-bis (5,5'-dimethyl-2,2'-bithiophen-yl)) perfluorocyclopent-1-en. I daglig tale er dette stof kaldet BTE, figur 1, såsom dem, der anvendes i en stimuleret emission-depletion (STED) mikroskopi 12, med litografi interferens, hvilket gør det et stærkt værktøj til large-område parallel nanopatterning af dybe subwavelength funktioner på en række forskellige overflader med potentiel udvidelse til 2- og 3-dimensioner.

Det fotokrome lag er oprindeligt i en homogen tilstand. Når dette lag er udsat for en ensartet belysning af λ 1, den omdannes til den anden isomer tilstand (1c), figur 2. Derefter prøven udsættes for en fokuseret knudepunkt ved λ 2, som omdanner prøven i den første isomere tilstand ( 1o) overalt, undtagen i umiddelbar nærhed af knudepunktet. Ved at styre dosis eksponering kan størrelsen af ​​den uomdannede region gøres vilkårligt lille. En efterfølgende fastsættelse trin af en af isomererne kan være selektivt og irreversibelt konverteres (låst) i en 3 rd tilstand (i sort) for at låse mønster. Dernæst laget udsættes ensartet for λ 1, som konverterer alt undtagen den låste region tilbage til den oprindelige tilstand. Densekvens af trin kan gentages med en forskydning af prøven i forhold til optikken, hvilket resulterer i to låste regioner, hvis afstand er mindre end fjernfelts diffraktion grænsen. Derfor kan enhver vilkårlig geometri være mønstret i en "dot-matrix" mode. 1-3

Protocol

BEMÆRK: foretage alle trin under renrum klasse 100 betingelser eller bedre. 1. Prøvefremstilling Rengør et 2 "diameter silicium wafer med buffered Oxide Etch (BOE) opløsning (6 dele 40% NH4 F og 1 del 49% HF) i 2 min (Advarsel: Farlige kemikalier). Vælg denne etch tid til at fjerne eventuelle organiske eller forurenende stoffer på overfladen. Skyl med deioniseret (DI) vand i ca. 5 min. Dry wafer med tør N2. BEMÆRK: Arbejd aldrig alene, når du…

Representative Results

Bearbejdede prøver: Forskellige oxidationstrin gange blev karakteriseret som illustreret ved atomar kraft micrographs i figur 3 ved en oxidation spænding på 0,85 V bestemmes ud fra cyklisk voltammetri. De 50 nm tykke film blev udsat for en stående bølge ved λ = 647 nm af periode 400 nm i 60 sekunder ved en effekttæthed på 0,95 mW / cm2. Da oxidation tid øges fra 10 min til 25 min, kan man tydeligt se et tab af kontrast som nogle af de omr…

Discussion

The fabrication, experimental setup and related operational procedures of Patterning via Optical Saturable Transitions (POST) have been described. By exploiting the linear switching properties of thermally stable photochromic molecules, POST offers new perspectives on circumventing the far-field diffraction limit.1-2,4

Previously long-term storage requirement of the samples was solved by storing the samples under N2, directly after the initial evaporation.2 How…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Thanks to Michael Knutson, Paul Hamric, Greg Scott, and Chris Landes for helpful discussions and assistance related to the custom inert atmosphere sample holder and assistance in the University of Utah student machine shop. P.C. acknowledges the NSF GRFP under Grant No. 0750758. P.C. acknowledges the University of Utah Nanotechnology Training Fellowship. R.M. acknowledges a NSF CAREER Award No. 1054899 and funding from the USTAR Initiative.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Isopropanol Fisher Scientific P/7500/15 CAUTION: flammable, use good
ventilation and avoid all ignition
sources.
Buffered Oxide Etch
Methanol Ricca Chemical 48-293-2  CAUTION: flammable, use good
ventilation and avoid all ignition
sources.
Ethylene Glycol Sigma-Aldrich 324558 CAUTION: Harmful if swallowed
Silicon wafer
Diamond Scribe
Glass Beakers
Tweezers Ted Pella 5226
Reactive Ion Etching System Oxford Plasma Lab 80 Plus
Inert Atmosphere Sample Holder Proprietary In-house Designed
Polarizing beamsplitter cube Thorlabs PBS052
HeNe Laser Melles Griot 25-LHP-171 CAUTION: Wear safety glasses
Half-wave plates Thorlabs WPH05M-633
Thermal Evaporator Proprietary In-house Designed
TMV Super TM Vacuum Products TMV Super
Voltammograph Bioanalytical Systems CV-37
Shortwave UV lamp 365nm UVP Analytik Jena Company UVGL-25 CAUTION: Wear UV safety glasses

References

  1. Brimhall, N., Andrew, T. L., Manthena, R. V., Menon, R. Breaking the far-field diffraction limit in optical nanopatterning via repeated photochemical and electrochemical transitions in photochromic molecules. Physical Review Letters. 107 (20), 205501 (2011).
  2. Cantu, P., et al. Subwavelength nanopatterning of photochromic diaryethene films. Applied Physics Letters. 100 (18), 183103 (2012).
  3. Cantu, P., Andrew, T. L., Menon, R. Nanopatterning of diarylethene films via selective dissolution of one photoisomer. Applied Physics Letters. 103 (17), 173112 (2013).
  4. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie. 9 (1), 413-418 (1873).
  5. Li, L., et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science. 324 (5929), 910-913 (2009).
  6. Fischer, J., von Freymann, G., Wegener, M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Advanced Materials. 22 (32), 3578-3582 (2010).
  7. Mirkin, C. A., et al. Beam pen lithography. Nature Nanotechnology. 5, 637-640 (2010).
  8. Xie, X., et al. Manipulating spatial light fields for micro- and nano-photonics. Physica E: Low-dimensional Systems and Nanostructures. 44, 1109-1126 (2012).
  9. Leroy, J., et al. High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes. Applied Physics Letters. 100 (21), 213507 (2012).
  10. Carr, D., Sekaric, L., Craighead, H. Measurement of nanomechanical resonant structures in single-crystal silicon. Journal of Vacuum Science & Technology B. 16 (6), 3821-3824 (1998).
  11. Wilhelmi, O., et al. Rapid prototyping of nanostructured materials with a focused ion beam. Japanese Journal of Applied Physics. 47 (6), 2010-5014 (2008).
  12. Hell, S. W. Far-field optical nanoscopy. Science. 316 (5828), 1153-1158 (2007).
  13. Chou, S. Y., Krauss, P. R., Renstrom, P. J. Nanoimprint lithography. Journal of Vacuum Science & Technology B. 14, 4129 (1996).
  14. Guillemette, M. D., et al. Surface topography induces 3D self-orientation of cells and extracellular matrix resulting in improved tissue function. Integrative Biology. 1 (2), 196-204 (2009).
check_url/52449?article_type=t

Play Video

Cite This Article
Cantu, P., Andrew, T. L., Menon, R. Patterning via Optical Saturable Transitions – Fabrication and Characterization. J. Vis. Exp. (94), e52449, doi:10.3791/52449 (2014).

View Video