Summary

协议获得合子和体细胞胚胎研究早期胚胎发育的调控中的示范豆科<em>苜蓿</em

Published: June 09, 2015
doi:

Summary

The goal is to illustrate that the model legume Medicago truncatula can be readily utilized to investigate the regulation of early plant embryogenesis to complement the non-legume Arabidopsis model. Pod morphology is linked to zygotic embryogenesis stages and a protocol to collect embryos using tissue culture is also provided.

Abstract

早期胚胎发生从单细胞受精卵开始经过快速细胞分裂和形态发生,和形态学特征在于预球状,球状,心脏,鱼雷和子叶阶段。这种渐进的发展是一个下复杂的分子网络的严格监管。在类似发展阶段收获足够早期胚胎是用于研究的早期胚胎发育的细胞和分子调节必需的。这并不简单,因为早期胚胎发育经历快速的形态一会儿例如,8苜蓿达到早期子叶期。在这里,我们用两种方法解决这个问题。第一个建立在帮助表示合子胚胎阶段的胚胎发育和形态荚之间的联系。这是特别基于荚果螺旋和刺的发展的数量。以补充体内秒的另一种方法案例研究是通过培养叶植产生体细胞胚。该介质包括一个不寻常的激素组合 – 生长素(1-萘乙酸),细胞分裂素(6-苄基氨基嘌呤),脱落酸和赤霉酸。不同阶段可以辨别生长出愈伤组织,而不清扫。

Introduction

豆类是高等植物有大约20,000种和豆科(豆科或)家族的第三大家族的第二个收获面积和总产量1谷物。大豆是全球第三大种植作物。谷物豆类提供约三分之一的膳食蛋白质和三分之一的植物油用于人类消费2。豆类与他们的N 2固定能力也有助于可持续的农业系统。 苜蓿 ,大豆一样,商店蛋白质和脂肪在其种子的子叶,并具有相当的遗传和基因组资源3,4遗传和基因组豆类模型。虽然M.蒺藜已启用的进步在了解豆科植物-根瘤菌共生4已越来越多地用于研究豆科植物种子生物学5-7和胚胎发育8,9。拟南芥胚胎已被广泛研究10,11,但它,我山非豆科和胚胎的细节不是完全相同紫花8,10。M.合子胚胎苜蓿有有趣的功能,具有鲜明的多脑垂体,一个endoployploid柄和基底细胞转移8。

体细胞胚胎发生(SE)通常用于再生植物12。在豆科植物模型M.苜蓿 ,种子线Jemalong 2HA(2HA)已经制定了从母公司Jemalong有体细胞胚13的比例很高。产生的胚胎的数量最近已实质上通过增加两个赤霉酸(GA)和脱落酸(ABA)的长期建立的介质14。在这种情况下,GA和ABA协同作用,这是不寻常鉴于GA和ABA平时行事拮抗14。从愈伤组织中产生的胚胎发育的表面,它允许胚胎的阶段容易地确定visuall上y和收获很容易。具有近等基因系是胚(2HA)和非胚(Jemalong)有利于体细胞胚的调查和在体内体外系统提供了不同的实验的可能性有。

理解胚胎发育的细胞和分子机制对于理解种子和植物发展至关重要。在豆类,如在其他双子叶植物,它是存储了用于人类营养产品胚胎的子叶。早期胚胎发育涉及细胞迅速分裂,并正确胚胎图案。在受精后约8天,M。苜蓿胚胎早期达到子叶阶段。形态特征是不完全的天施肥温室条件后表示。因此,一个高效的标准化的方法来表示胚胎发育的阶段,是研究遗传REGUL有价值通货膨胀的早期胚胎合子。

在本文中,我们提供了两个标准化的协议,收集胚胎发育生物学研究胚胎发育中的豆类模型M.蒺藜 。第一个是,而第二种是通过培养叶片为外植体细胞胚提供轻松访问大量胚胎数胚胎发育关联和POD形态收集合子胚。

Protocol

1.合子胚胎发育植物材料成长的苜蓿野生型Jemalong或者其近等基因,高度重可生成基因型Jemalong 2HA 13(被称为2HA)与一个14小时光照温室中和23℃/ 19℃,白天/夜间温度。 皮尔斯种皮的表面(与23政针)播种前种子,这样的水被允许进入种子浸泡在水中过夜。加入足够的水来完全覆盖种子。 播种3种子在每个直径为15cm锅(共10个盆)在盆栽混合物(粗砂,珍?…

Representative Results

对应于不同胚胎阶段合子胚不同荚结构示于图1A – f当不同胚胎阶段示于图2A – F。在相同阶段选择豆荚,是胚珠样品相当均匀,可以得到( 图3A)。通过利用RT-qPCR的胚胎特异性基因可容易地检测和时程研究评价9。一些额外的清扫将允许胚胎( 图3B)的进一步富集。加工用于原位杂交策略可以容易地进行,以…

Discussion

所描述的协议是相对简单的,让豆类胚胎与所有的现代细胞和分子技术调查。我们认识到,有优势和在体内体外方法的缺点。两者都允许更专注于早期胚胎发育比较成熟的种子19的文化。

体内研究的情况下,所描述主要是从它适合于许多胚胎研究荚果胚珠的分离。它当然可以通过切片关闭“钩”区( 图3B)中以进一步富集胎儿组?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This research was supported by the Australian Research Council grant CEO348212 and the University of Newcastle. The assistance of Dr. Sam Zhang is acknowledged.

Materials

P4 medium Sigma-Aldrich Use Sigma-Aldrich Chemicals or other analytical grade supplier
Major salts
Minor salts
Vitamins
Agar Bacto Laboratories 214010 Bacto agar
Plant hormones
1-Naphthaleneacetic acid Sigma-Aldrich N0640 Dissolve in small amount of 1 M NaOH
Abscisic acid Sigma-Aldrich A1049 Dissolve in small amount of 1 M NaOH
6-Benzylaminopurine Sigma-Aldrich B3274 Dissolve in MQ water with heating and few drops 1N HCl
Gibberellic Acid Sigma-Aldrich G7645 Dissolve in small amount of ethanol
Equipment
Stereo dissecting microscope Leica MZFLIII Or similar
Light microscope Zeiss Axiophot Or similar, with suitable optics
Digital camera Zeiss AxioCam HRc Or similar
Sterilising leaves
250 mL screw cap polycarbonate container with polypropylene lid SARSTEDT 75.9922.519 Autoclavable

Riferimenti

  1. Gepts, P., et al. Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol. 137 (4), 1228-1235 (2005).
  2. Graham, P. H., Vance, C. P. Legumes: importance and constraints to greater use. Plant Physiol. 131 (3), 872-877 (2003).
  3. Young, N. D., Udvardi, M. Translating Medicago truncatula genomics to crop legumes. Curr. Opin. Plant Biol. 12 (2), 193-201 (2009).
  4. Young, N. D., et al. The Medicago genome provides insights into the evolution of rhizobial symbioses. Nature. 480 (7378), 520-524 (2011).
  5. Gallardo, K., Le Signor, C., Vandekerckhove, J., Thompson, R. D., Burstin, J. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol. 133 (2), 664-682 (2003).
  6. Verdier, J., et al. Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Mol. Biol. 67 (6), 567-580 (2008).
  7. Thompson, R., Burstin, J., Gallardo, K. Post-genomic studies of developmental processes in legume seeds. Plant Physiol. 151 (3), 1023-1029 (2009).
  8. Wang, X. -. D., Song, Y., Sheahan, M. B., Garg, M. L., Rose, R. J. From embryo sac to oil and protein bodies: embryo development in the model legume Medicago truncatula. New Phytol. 193 (2), 327-338 (2012).
  9. Kurdyukov, S., Song, Y., Sheahan, M. B., Rose, R. J. Transcriptional regulation of early embryo development in the model legume Medicago truncatula. Plant Cell Rep. 33 (2), 349-362 (2014).
  10. Mansfield, S. G., Briarty, L. G. Early embryogenesis in Arabidopsis thaliana. 2. The developing embryo. Can. J. Botany. 69 (3), 461-476 (1991).
  11. Seefried, W. F., Willman, M. R., Clausen, R. L., Jenik, P. D. Global regulation of embryonic patterning in Arabidopsis by microRNAs. Plant Physiol. 165 (2), 670-687 (2014).
  12. Birnbaum, K. D., Sánchez Alvarado, A. Slicing across kingdoms: regeneration in plants and animals. Cell. 132 (4), 697-710 (2008).
  13. Rose, R. J., Nolan, K. E., Bicego, L. The development of the highly regenerable seed line Jemalong 2HA for transformation of Medicagotruncatula – implications for regenerability via somatic embryogenesis. J. Plant Physiol. 155 (6), 788-791 (1999).
  14. Nolan, K. E., Song, Y., Liao, S., Saeed, N., Zhang, X., Rose, R. J. An unusual ABA and GA synergism increases somatic embryogenesis, facilitates its genetic analysis and improves transformation in Medicago truncatula. PloS ONE. 9 (6), e99908 (2014).
  15. Liu, C. M., Meinke, D. W. The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J. 16 (1), 21-31 (1998).
  16. Nolan, K. E., Kurdyukov, S., Rose, R. J. Expression of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (SERK1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula. J. Exp. Bot. 60 (6), 1759-1771 (2009).
  17. Iantcheva, A., Vlahova, M., Atanassov, A., Mathesius, U., et al. Somatic embryogenesis from leaf explants. The Medicago truncatula handbook. , (2006).
  18. Thomas, M. R., Johnson, L. B., White, F. F. Selection of interspecific somatic hybrids of Medicago by using Agrobacterium transformed tissues. Plant Sci. 69 (2), 189-198 (1990).
  19. Ochatt, S. J., Thorpe, T. A., Yeung, E. C. Immature seeds and embryos of Medicago truncatula cultured in vitro. Plant Embryo Culture: Methodsand Protocols, Methods in Molecular Biology. 710, 39-52 (2011).
  20. Mantiri, F. R., Kurdyukov, S., Lohar, D. P., Sharopova, N., Saeed, N. A., Wang, X. D., VandenBosch, K. A., Rose, R. J. The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol. 146 (4), 1622-1636 (2008).
check_url/it/52635?article_type=t

Play Video

Citazione di questo articolo
Kurdyukov, S., Song, Y., Tiew, T. W., Wang, X., Nolan, K. E., Rose, R. J. Protocols for Obtaining Zygotic and Somatic Embryos for Studying the Regulation of Early Embryo Development in the Model Legume Medicago truncatula. J. Vis. Exp. (100), e52635, doi:10.3791/52635 (2015).

View Video