Summary

简单的聚丙烯酰胺为基础的多井刚度检测方法的刚度依赖的细胞反应的研究

Published: March 25, 2015
doi:

Summary

Here, a method that enables quick, efficient, and inexpensive preparation of polyacrylamide gels in a multiwell plate format is described. The method does not require any specialized equipment and could be easily adopted by any research laboratory. It would be particularly useful in research focused on understanding stiffness-dependent cell responses.

Abstract

Currently, most of the in vitro cell research is performed on rigid tissue culture polystyrene (~1 GPa), while most cells in the body are attached to a matrix that is elastic and much softer (0.1 – 100 kPa). Since such stiffness mismatch greatly affects cell responses, there is a strong interest in developing hydrogel materials that span a wide range of stiffness to serve as cell substrates. Polyacrylamide gels, which are inexpensive and cover the stiffness range of all soft tissues in the body, are the hydrogel of choice for many research groups. However, polyacrylamide gel preparation is lengthy, tedious, and only suitable for small batches. Here, we describe an assay which by utilizing a permanent flexible plastic film as a structural support for the gels, enables the preparation of polyacrylamide gels in a multiwell plate format. The technique is faster, more efficient, and less costly than current methods and permits the preparation of gels of custom sizes not otherwise available. As it doesn’t require any specialized equipment, the method could be easily adopted by any research laboratory and would be particularly useful in research focused on understanding stiffness-dependent cell responses.

Introduction

大多数组织在体内是软的粘弹性材料具有的杨氏模量为0.1千帕为脑至100千帕软软骨,然而,大多数体外细胞研究的是组织培养聚苯乙烯(TCP)的进行,其具有〜1京帕的模量1,本刚度匹配极大地影响方式细胞所处的环境做出反应。越来越多的研究机构是这样的专用于阐明对各种细胞类型,2,3-包括干细胞。4,结果的命运衬底刚度的效果,多水凝胶已经开发了在刚性依赖的细胞的帮助理解生物学包括聚丙烯酰胺(PA),5-7聚乙二醇(PEG),8,9-二甲基硅氧烷(PDMS),10和藻酸盐。11虽然这种衬底刚度对细胞命运产生重大影响的证据正在增长,大多数研究的进行上小规模用少量第amples。在基板刚度的细胞类型或环境条件是罕见的数组效果系统,多维的研究。12

几个有前途的高通量凝胶技术已被开发出来,其中包括基于PEG的微阵列,用于生产琼脂糖凝胶微珠,14或微和纳米棒,其中刚度由微米棒的直径和高度调制13的微流体装置15不过的技术来制备这样的基体是复杂的,并提供给限于实验室的数目。许多研究涉及刚度调制细胞应答使用聚丙烯酰胺(PA)的凝胶,这是不仅便宜和简单的实现,但也显示出杨氏模量,即0.3的生理学相关范围- 300千帕16-22但是,现有的方法来制造的PA凝胶为细胞培养是劳动密集型的,因此制备ARED小批量。从该凝胶中必须准备的规定部分与P​​A的凝胶作为细胞底物的制备相关的困难茎:1)在不存在氧,以允许完全聚合,2)具有平坦和光滑的表面,以允许均匀的细胞附着和铺展,和3)永久地固定在细胞培养皿为了防止浮动的底部。

几个小组已尝试产生的PA的凝胶为细胞培养在大批量。塞姆勒等人制备的厚片的PA凝胶中,将其“切断”用打孔器并置于96孔板中。23然而,该方法仅限于更硬的凝胶, > 1千帕在杨氏模量,因为较软的凝胶是“粘性”,难以切割,且容易损坏。 MIH 等人开发出了更复杂的技术,它允许对凝胶直接聚合在玻璃底多孔板。 <s达> 6这是通过浇注胶解决方案集成到功能化玻璃底板和“夹”他们自定义的玻璃罩阵列形成凝胶达到6虽然非常有前途的,轻微的边缘效应仍在使用这种技术观察。此外,该技术需要定制设计的阵列不立即向许多实验室以及昂贵玻璃底多孔板访问。

本文介绍了一种简单而廉价的方式来组装PA凝胶中,可以很容易地通过任何实验室多孔板。这里,一个挠性塑料支撑被利用,其中有两个侧边 – 一个疏水性的,这是斥PA凝胶,和亲水性的,在沉积该共价结合的PA的凝胶。一旦PA凝胶片被淀积并永久地固定到柔性塑料支撑,它使得能够处理任何厚度或硬度的凝胶和切削成任何所需的形状。这APPRoach不仅产生定制的塑料“盖玻片'的尺寸不否则市售,也省却了必要的预治疗玻璃表面,无论是玻璃盖玻片或昂贵的玻璃底多孔板的孔中,具有PA的粘合溶液,这是一个繁琐和耗时的工序。最后,均匀的PA的凝胶片材可以在大批量制备并存储的去水合数月。

总之,这里介绍的测定法是一种改进的几个方面的现有的方法。首先,多孔板组装的过程中是有效的,并且所需要的材料的总成本是低的。其次,水凝胶生产大批量在一个单一的均匀的凝胶膜。最后,仅是商业上可用的材料是必需的。该测定的效用是通过探索基板刚度对细胞形态的影响,传播区域所示。

Protocol

1.准备水凝胶有关的解决方案和等分制备的聚丙烯酰胺凝胶前体溶液。 通过混合丙烯酰胺(A)中制备的聚丙烯酰胺凝胶前体溶液(40%w / v的,M R71.08克/摩尔),交联剂双丙烯酰胺(B)(2%w / v的,M R154.17克/摩尔),和DE-离子水在表1中规定的体积百分比。 注意:这些解决方案能在大批量制备,并储存在4℃下进行长达数月。 注意:丙烯酰胺?…

Representative Results

聚丙烯酰胺(PA)的水凝胶被广泛用来测试刚性依赖性细胞反应。17,24通过混合不同浓度的丙烯酰胺(A)和双-丙烯酰胺(B),可以使跨越大部分软组织中的刚度范围PA的凝胶主体- 0.3 – 300千帕的杨氏模量1但是,制备的聚丙烯酰胺凝胶的是乏味和耗时的,常常限制了其在“高通量”的应用,例如药物筛选效用12在这里,为简单而快速的方法组装的PA凝胶在多井板或任何其它期…

Discussion

聚丙烯酰胺凝胶,最初开发用于电泳28现在常规用作细胞培养基材来研究衬底刚度对细胞形态,运动性,并且除其他细胞特征的通信3,24,29的影响。聚丙烯酰胺允许操纵衬底刚度以包含在身体的所有软组织的刚度(0.3 – 300千帕)1,在聚合物前体浓度的简单改变( 图2,表1中 ,也见参考文献17,25,26)。耦合到一个事实,即PA的凝胶是相当便宜和简单的制备…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was funded by start-up funds provided to Dr. Silviya Zustiak by Saint Louis University as well as by a President’s Research Fund (PRF) grant awarded to Dr. Silviya Zustiak by Saint Louis University. We thank Naveed Ahmed and Keval Shah for technical assistance.

Materials

Reagents
40% Acrylamide Bio-Rad 161-0140
2% Bis-acrylamide Bio-Rad 161-0142
Ammonium Persulfate Bio-Rad 161-07000
TEMED Sigma Aldrich T9281
Sulfo-SANPAH Thermo Scientific 22589
Collagen Type 1, from Rat tail, 3.68 mg/mL BD Biosciences 354236
Dimethyl sulfoxide (DMSO) Fisher Scientific  BP231-100
Hydrophobic solution – Repel Silane  GE Healthcare Bio-Sciences 17-1332-01
PBS (1x), pH 7.4 HyClone SH30256.01
Polydimehylsiloxane (PDMS) [Slygard 182 Elastomer Kit] Elsworth Adhesives 3097358-1004
Tyrpsin/EDTA (10x) Sigma Aldrich 44174
RPMI-1640 Medium (1x) HyClone SH30027-02
Fetal Bovine Serum HyClone SH30073-03
Penicillin Streptomycin MP Biomedicals 1670046
Detergent – Triton-X Sigma Aldrich T8787
Formaldehyde 37% Solution Sigma Aldrich F1635
Bovine Serum Albumin (BSA) Sigma Aldrich A2153
BSA-based cell adhesion blocking kit – ECM Cell Adhesion Array Kit Chemicon International ECM540
Disposable lab equipment
flexible plastic support – GelBond PAG Film for Polyacrylamide Gels GE Healthcare Bio-Sciences 309819
Glass Plates Slumpys GBS4100SFSL
50 mL Conicals Fisher Scinetific 3181345107
15 mL Conicals FALCON 352097
Micro centrifuge tubes Fisher Scinetific 2 mL: 02681258
96-well plate (flat bottom) Fisher Scinetific 12565501
Disposable Pipettes (1 mL, 2mL, 5mL, 10mL, 25 mL, 50mL) Fisher Scinetific 1 mL: 13-678-11B, 2mL: 05214038, 5mL(FALCON): 357529, 10mL: 13-678-11E, 25mL: 13-678-11, 50mL: 13-678-11F
Glass Transfer Pipettes Fisher Scinetific 5 3/4": 1367820A, 9":136786B
Pipette Tips (1-200uL, 101-1000uL) Fisher Scinetific 2707509
Plastic Standard Disposable Transfer Pipettes Fisher Scientific 13-711-9D
Parafilm PARAFILM  PM992
Powder Free Examination Gloves Quest 92897
Silicone spacers – Silicone sheet, 0.5 mm thick/13 cm x 18 cm Grace Bio-Labs JTR-S-0.5
Large/non-disposable lab equipment
Light and Flourescent Microscope (Axiovert 200M) Zeiss 3820005619
Microscope Software Zeiss AxioVision Rel. 4.8.2
UV oven UVITRON UV1080
Vacuum chamber/degasser BelArt 999320237
Vacuum pump for degasser KNF Lab 5097482
Tissue Culture Hood NUAIRE NU-425-600
Chemical Fume Hood KEWAUNEE 99151
Inverted Microscope (Axiovert 25) Zeiss 663526
Incubator NUAIRE NU-8500
Pipette Aid Drummond Scientific Co. P-76864
Hemacytometer Bright-Line 383684

Riferimenti

  1. Levental, I., Georges, P. C., Janmey, P. A. Soft biological materials and their impact on cell function. Soft Matter. 3, 299-306 (2007).
  2. Minton, K. Mechanotransduction: A stiff response. Nature Reviews Molecular Cell Biology. 15 (8), 500-500 (2014).
  3. Yeung, T., et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell motility and the cytoskeleton. 60 (1), 24-34 (2005).
  4. Watt, F. M., Huck, W. T. Role of the extracellular matrix in regulating stem cell fate. Nature Reviews Molecular Cell Biology. 14 (8), 467-473 (2013).
  5. Zustiak, S., Nossal, R., Sackett, D. L. Multiwell stiffness assay for the study of cell responsiveness to cytotoxic drugs. Biotechnology and bioengineering. 111 (2), (2014).
  6. Mih, J. D., et al. A multiwell platform for studying stiffness-dependent cell biology. PLoS One. 6 (5), e19929 (2011).
  7. Sunyer, R., Jin, A. J., Nossal, R., Sackett, D. L. Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PloS one. 7 (10), e46107 (2012).
  8. Herrick, W. G., et al. PEG-phosphorylcholine hydrogels as tunable and versatile platforms for mechanobiology. Biomacromolecules. 14 (7), 2294-2304 (2013).
  9. Tokuda, E. Y., Leight, J. L., Anseth, K. S. Modulation of matrix elasticity with PEG hydrogels to study melanoma drug responsiveness. Biomaterials. 35 (14), 4310-4318 (2014).
  10. Feng, J., et al. Substrate stiffness influences the outcome of antitumor drug screening in vitro. Clinical hemorheology and microcirculation. 55 (1), 121-131 (2013).
  11. Ramamoorthi, K., Hara, J., Ito, C., Asuri, P. Role of Three-Dimensional Matrix Stiffness in Regulating the Response of Human Neural Cells to Toxins. Cellular and Molecular Bioengineering. 7 (2), 1-7 (2014).
  12. Tilghman, R. W., et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. PloS one. 5 (9), e12905 (2010).
  13. Gobaa, S., et al. Artificial niche microarrays for probing single stem cell fate in high throughput. Nature methods. 8 (11), 949-955 (2011).
  14. Kumachev, A., et al. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials. 32 (6), 1477-1483 (2011).
  15. Fu, J., et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods. 7 (9), 733-736 (2010).
  16. Pelham, R. J., Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A. 94 (25), 13661-13665 (1997).
  17. Tse, J. R., Engler, A. J., et al. Preparation of hydrogel substrates with tunable mechanical properties. Current protocols in cell biology / editorial board, Juan S. Bonifacino … [et al.]. 10 (Unit 10 16), (2010).
  18. Yeung, T., et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell motility and the cytoskeleton. 60 (1), 24-34 (2005).
  19. Lo, C. -. M., Wang, H. -. B., Dembo, M., Wang, Y. -. l. Cell movement is guided by the rigidity of the substrate. Biophysical journal. 79 (1), 144-152 (2000).
  20. Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell. 126 (4), 677-689 (2006).
  21. Discher, D. E., Janmey, P., Wang, Y. -. l. Tissue cells feel and respond to the stiffness of their substrate. Science. 310 (5751), 1139-1143 (2005).
  22. Young, D. A., Choi, Y. S., Engler, A. J., Christman, K. L. Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials. 34 (34), 8581-8588 (2013).
  23. Semler, E. J., Lancin, P. A., Dasgupta, A., Moghe, P. V. Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. Biotechnology Bioengineering. 89 (3), 296-307 (2005).
  24. Reinhart-King, C. A., Dembo, M., Hammer, D. A. Cell-cell mechanical communication through compliant substrates. Biophysical journal. 95 (12), 6044-6051 (2008).
  25. Fischer, R. S., Myers, K. A., Gardel, M. L., Waterman, C. M. Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior. Nature protocols. 7 (11), 2056-2066 (2012).
  26. Quinlan, A. M., Billiar, K. L. Investigating the role of substrate stiffness in the persistence of valvular interstitial cell activation. Journal of Biomedical Materials Research Part A. 100 (9), 2474-2482 (2012).
  27. Zustiak, S. P., Leach, J. B. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules. 11 (5), 1348-1357 (2010).
  28. Chrambach, A., Rodbard, D. Polyacrylamide gel electrophoresis. Science. 172 (3982), 440-451 (1971).
  29. Lin, Y. C., et al. Mechanosensing of substrate thickness. Physical review. E, Statistical, nonlinear, and soft matter physics. 82 (4), 041918 (2010).
  30. Chrambach, A. . The Practice of Quantitative Gel Electrophoresis. , (1985).
  31. Sagvolden, G., Giaever, I., Pettersen, E. O., Feder, J. Cell adhesion force microscopy. Proceedings of the National Academy of Sciences of the United States of America. 96 (2), 471-476 (1999).
  32. Javaherian, S., Li, K. J., McGuigan, A. P. A simple and rapid method for generating patterned co-cultures with stable interfaces. BioTechniques. 55 (1), 21-26 (2013).
  33. Tarone, G., Galetto, G., Prat, M., Comoglio, P. M. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins. The Journal of cell biology. 94 (1), 179-186 (1982).
  34. Trujillo, V., Kim, J., Hayward, R. C. Creasing instability of surface-attached hydrogels. Soft Matter. 4 (3), 564-569 (2008).
  35. Saha, K., et al. Surface creasing instability of soft polyacrylamide cell culture substrates. Biophysical journal. 99 (12), L94-L96 (2010).
  36. Buxboim, A., Rajagopal, K., Andre’EX, B., Discher, D. E. How deeply cells feel: methods for thin gels. Journal of Physics: Condensed Matter. 22 (19), 194116 (2010).
  37. Merkel, R., Kirchgessner, N., Cesa, C. M., Hoffmann, B. Cell force microscopy on elastic layers of finite thickness. Biophysical journal. 93 (9), 3314-3323 (2007).
check_url/it/52643?article_type=t

Play Video

Citazione di questo articolo
Syed, S., Karadaghy, A., Zustiak, S. Simple Polyacrylamide-based Multiwell Stiffness Assay for the Study of Stiffness-dependent Cell Responses. J. Vis. Exp. (97), e52643, doi:10.3791/52643 (2015).

View Video