Summary

神经导航引导下重复经颅磁刺激的失语

Published: May 06, 2016
doi:

Summary

This study is designed to test the hypothesis that neuronavigational system-guided transcranial magnetic stimulation has higher accuracy for targeting the intended target as demonstrated by eliciting a greater degree of virtual aphasia in healthy subjects, measured by delay in reaction time to picture naming.

Abstract

重复经颅磁刺激(磁刺激)被广泛用于多种神经系统疾病,因为它已经获得了确认其潜在的治疗效果。大脑兴奋是经颅磁刺激非侵入性调制,经颅磁刺激的语言领域已经证明了它的治疗失语的潜在影响。在我们的协议中,我们的目标是通过使用neuronavigational TMS(NTMS),以及国际10-20脑电图系统为常规的TMS(CTMS)的F3抑制布洛德曼区域44和45人工诱导健康受试者虚拟失语。为了测量失语的程度,在反应时间到画面命名任务前和刺激后的变化进行测量,并比较在NTMS和CTMS之间的反应时间的延迟。两个TMS刺激方法准确性通过平均目标和实际刺激塔莱拉什坐标进行比较。刺激的一致性是通过从目标的误差范围内表现出来。这STU的目的DY是展示使用NTMS的,并描述相比,这些CTMS的NTMS的优点和局限性。

Introduction

重复经颅磁刺激(磁刺激)非侵入激活神经元回路中的中枢和外周神经系统。1磁刺激调制大脑兴奋2,并在几个精神病和神经性疾病的潜在治疗作用,如电机的弱点,失语,忽视,和疼痛3比运动皮层使用国际10-20脑电系统通常被确定的其他颅磁刺激,或通过测量特定外部的地标距离目标点。

然而,在尺寸,解剖学,和大脑皮质的形态学的个体间的差异不考虑,使得最佳目标定位有挑战性。3为磁刺激应用的另一个关键问题是在磁性线圈的位置和皮质区之间的偏差预期刺激。

光学跟踪导航神经外科有EXP相与它的应用程序涵盖包括rTMS治疗的电磁线圈的指导认知神经科学领域。该neuronavigational系统协助查明rTMS治疗的最佳目标结构。在对目标区域定位线圈4,5这样的分歧经常与采用脑电图10-20系统的传统方法时,这有望在神经导航克服。

这项研究办法表明诱导由neuronavigational的rTMS针对布罗卡区,采用个别解剖标测健康受试者虚拟失语的方法。虚拟失语在反应时间到图像命名变化方面的程度进行测量,并与从常规的刺激方法相比。神经导航引导方法具有用于递送磁脉冲到脑更高的精度,并且因此预计证明比传统方法更大的临床变化。此螺栓的目标y为引入刺激的更精确和有效的方法,患者的临床设置失语。

Protocol

伦理学声明:本研究​​通过盲医院的机构审查委员会。 1.准备材料(表1) 使用TMS设备具有3.0特斯拉的最大输出和在350微秒的脉冲宽度200-240伏交流50/60赫兹5A的电源。 获得在由肌电图(EMG),每个受试者休息运动阈值(RMT)使用TMS系统和有源电极(参见步骤3.1细节)来确定运动诱发电位(MEP)。设置RMT作为实际TMS研究方案( 图1)单独强度。 …

Representative Results

Kim等人证实TMS的相比于非导航的传统方法neuronavigational系统引导的更优异的效果通过刺激多焦刺激向右M1区域8的更少分散, 如图9,进一步的证据支持掺入用TMS的neuronavigational系统由随机交叉实验表明通过靶向布洛德曼区域44和45对NTMS和国际10-20脑电图系统CTMS的F3诱导健康受试者虚拟失语症9 K…

Discussion

TMS无论是在临床实践和基础研究被广泛使用。10有价值的治疗作用是由磁刺激的生理影响,包括皮质兴奋与低频磁刺激治疗失语症的抑制神经调节作用所提供。神经处理或虚拟的11瞬态中断通过磁刺激诱 ​​导损毁可以改变行为表现。12然而,磁刺激的期望的效果,可以稀释或甚至不具有错位的目标上的线圈发生。误瞄准原本预定目标和实际的刺激皮层区域之间可以发生?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究是由来自韩国医疗技术的R&D项目,卫生部和福利,韩国的赠款(A101901)的支持。我们感谢吉扬李医生在整个过程提供技术援助。

Materials

Medtronic MagPro X100 MagVenture 9016E0711
MCF-B65 Butterfly coil MagVenture 9016E042
Brainsight TMS Navigation Rogue Research
KITBSF1003 

Riferimenti

  1. Barker, A. T., Jalinous, R., Freeston, I. L. Non-invasive magnetic stimulation of human motor cortex. Lancet. 11 (1), 1106-1107 (1985).
  2. Pape, T. L., Rosenow, J., Lewis, G. Transcranial magnetic stimulation: a possible treatment for TBI. J Head Trauma Rehabil. 21 (5), 437-451 (2006).
  3. Ruohonen, J., Karhu, J. Navigated transcranial magnetic stimulation. Neurophysiol Clin. 40 (1), 7-17 (2010).
  4. Dell’Osso, B., et al. Augmentative repetitive navigated transcranial magnetic stimulation (rTMS) in drug-resistant bipolar depression. Bipolar Disord. 11 (1), 76-81 (2009).
  5. Herbsman, T., et al. More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response. Biol Psychiatry. 66 (5), 509-515 (2009).
  6. Schuhmann, T., Schiller, N. O., Goebel, R., Sack, A. T. The temporal characteristics of functional activation in Broca’s area during overt picture naming. Cortex. 45 (9), 1111-1116 (2009).
  7. Danner, N., Julkunen, P., Kononen, M., Saisanen, L., Nurkkala, J., Karhu, J. Navigated transcranial magnetic stimulation and computed electric field strength reduce stimulator-dependent differences in the motor threshold. J Neurosci Methods. 174 (1), 116-122 (2008).
  8. Bashir, S., Edwards, D., Pascual-Leone, A. Neuronavigation increases the physiologic and behavioral effects of low-frequency rTMS of primary motor cortex in healthy subjects. Brain Topogr. 24 (1), 54-64 (2011).
  9. Kim, W. J., Min, Y. S., Yang, E. J., Paik, N. J. Neuronavigated vs. conventional repetitive transcranial magnetic stimulation method for virtual lesioning on the Broca’s area. Neuromodulation. 17 (1), 16-21 (2014).
  10. Lioumis, P., et al. A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. J Neurosci Methods. 204 (2), 349-354 (2012).
  11. Hamilton, R. H., Chrysikou, E. G., Coslett, B. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang. 118 (1-2), 40-50 (2011).
  12. Pascual-Leone, A., Walsh, V., Rothwell, J. Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol. 10 (2), 232-237 (2000).
  13. Julkunen, P., et al. Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage. 44 (3), 790-795 (2009).
  14. Chrysikou, E. G., Hamilton, R. H. Noninvasive brain stimulation in the treatment of aphasia: exploring interhemispheric relationships and their implications for neurorehabilitation. Restor Neurol Neurosci. 29 (6), 375-394 (2011).
check_url/it/53345?article_type=t

Play Video

Citazione di questo articolo
Kim, W., Hahn, S. J., Kim, W., Paik, N. Neuronavigation-guided Repetitive Transcranial Magnetic Stimulation for Aphasia. J. Vis. Exp. (111), e53345, doi:10.3791/53345 (2016).

View Video