Summary

בתלת ממד המודפס Microfluidic מערכת חוצת זרימה עבור Ultrafiltration / nanofiltration ממברנה בדיקות ביצועים

Published: February 13, 2016
doi:

Summary

תכנון ייצור של מערכת סינון microfluidic בתלת ממד (3-D) מודפס חוצת זרימת המודגם. המערכת משמשת כדי לבדוק את הביצועים ולבחון עכירות של אולטרה סינון ו nanofiltration ממברנות (מרוכבים סרט דק).

Abstract

מזעור וניהול של עכירות קרום הנו אתגר משמעותי בתהליכים תעשייתיים מגוונים ושיטות אחרות העושות שימוש בטכנולוגיה הממברנה. הבנת תהליך העכירות יכולה להוביל אופטימיזציה ויעילות גבוהה יותר של סינון מבוסס הממברנה. הנה אנחנו מראים את העיצוב ואת הייצור של אוטומטי בתלת ממד (3-D) מודפסת מערכת microfluidic חוצה זרימה סינון שיכול לבדוק עד 4 ממברנות במקביל. תאי microfluidic הודפסו באמצעות טכנולוגיית הדפסה רבה-חומר photopolymer 3-D, אשר ממשמשים פולימר קשה שקוף עבור גוף תא microfluidic ושלב שכבת פולימרים דקה דמוית גומי, המונעת דליפות במהלך מבצע. המופע של אולטרה סינון (UF), ו nanofiltration (NF) ממברנות נבדקו עכירות הממברנה יכול להיבחן עם אלבומין בסרום שור מודל foulant (BSA). פתרונות עדכונים המכילים BSA הראו ירידת שטף של הממברנה. פרוטוקול זה ניתן להאריךed למדוד עכירות או biofouling עם אורגניים רבים אחרים, אנאורגניות או חיידקים המכילים פתרונות. עיצוב microfluidic במיוחד יתרון לבדיקות חומרים כי הם יקרים או זמינים רק בכמויות קטנות, עבור סוכרים למשל, חלבונים, שומנים או בשל שטח פנים הקטן של הממברנה נבדקת. מערכת מודולרית זו עשויה גם להיות מורחבת בקלות לבדיקת קצב העברת נתונים גבוהה של ממברנות.

Introduction

טכנולוגיית ממברנה היא חלק בלתי נפרדת בתהליכים תעשייתיים, תוך אחרים הדורשות ההפרדה מומס מפתרון בתפזורת, לעומת זאת, עכירות הממברנה היא אתגר מתמשך גדול. 1 דוגמאות נפוצות שבו עכירות קרום מתרחשות לכלול את השימוש של ממברנות אולטרה סינון עבור פרדה על בסיס הגודל של שפכים, ממברנות מרוכבים הסרט 2 ורזה להפרדת יונים מומסים גדול מן מליחים או מי ים. 3 סימנים אופייניים של עכירות כוללים עלייה בלחץ הטרנסממברני וירידה השטף. זה מקטין את הפרודוקטיביות של קרום ומקצר את חייה עקב פרוטוקולי ניקוי כימי או אחר. לכן הביצועים הממברנה הוא אינדיקטור טוב כדי להעריך עכירות ו להבין את המנגנונים ואת ההשפעות של עכירות, biofouling היווצרות ביופילם על ממברנות. כמו כן, הערכת ביצועים חשוב בעיצוב או שינוי של ממברנות חדש.

EFT ">

עניין השימוש של ממברנות במכשירי microfluidic גדל בעשור האחרון. 4 לאחרונה חקרנו את השפעת lipopolysaccharide רכיבי חיידקים, ואת glycosphingolipid על עכירות פני שטח של קרום nanofiltration, ואת הרגישות הבאה של המשטח המותנה מיקרוביאלי מצורף. 5 מכשיר צולבות זרימה microfluidic שימש כדי להעריך את הביצועים של ממברנות nanofiltration. זה איפשר שימוש ברכיבי השומנים לא מסחרי מיוחד זמין רק בכמויות קטנות עכירות משטח הממברנה בגלל שטח הפנים קרום היה קטן. גודל המערכת אפשר ניצול יעיל של חומרי קרום כמויות נמוכות של פתרונות. בפרוטוקול זה, אנו מתארים את העיצוב ואת ייצור של המכשיר microfluidic לבדיקות ביצועים קרום, ולהתוות את ההתאגדות של המכשיר למערכת זרימת לחץ. הפגנה של מכשיר מוצגת על ידי testing את הביצועים של ממברנות אולטרה סינון וממברנות nanofiltration באמצעות foulant מודל, BSA. 6,7

Protocol

תכנון ייצור 1. של מערכת הבדיקה Microfluidic עיצוב מכשיר microfluidic כמו שני חלקים נפרדים: חלק עליון חלק תחתון (איור 1) בתכנית CAD. להתחיל לעשות את החלק התחתון על ידי שימוש באפשרות מלבן לצייר 40 מ&quot…

Representative Results

תאי זרימת microfluidic עוצבו באמצעות תכנית CAD והודפסו באמצעות photopolymer רב-חומר תלת ממדי (3-D) מדפסת. תא זה תוכנן בשני חלקים, כך ממברנות יכול להיות מוכנס בקלות יוסר ממכשיר (איור 1). כל חלק היה 1 ס"מ עובי, מודפס פולימר קשה, ברור עבור שלמות מבנית, ואת הצדדים מול קרום היו overcoa…

Discussion

פרוטוקול זה מתאר את העיצוב של מכשיר צולבות זרימה microfluidic מודפסים בתלת ממד לבדיקה של ממברנות nanofiltration ו אולטרה סינון. לאחרונה, הראינו את ההצלחה של וריאציה של פרוטוקול זה עם מיזוג קרום nanofiltration ו עכירות עם glycosphingolipids ו lipopolysaccharides והפרשי ביצועים הממברנה עם הזרקת התרבות עוק?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

המחברים מודים Stratasys (רחובות, ישראל) עבור הדפסה תלת מימדית של המכשיר. אנו מודים Microdyne-Nadir (גרמניה) עבור דגימות קרום. מחקר זה מומן על ידי הקרן הלאומית למדע (גרנט 1474-1413) כדי CJA

Materials

BSA SIGMA-ALDRICH A6003
NaCl DAEJUNG 7548-4100
MgSO4 EMSURE 1058861000
NF Membrane Filmtec NF200
30 kDa UF Membrane MICRODYN NADIR UH030
50 kDa UF Membrane MICRODYN NADIR UH050
Pressure Transducer Midas 43006711
Ball Valves AV-RF Q91SA-PN6.4
3-way Valve iLife Medical Devices 902.071
Pressure Regulator Swagelok KCB1G0A2A5P20000
Flow-meter Bronkhorst L01-AGD-99-0-70S
Balances MRC BBA-1200
Pump Cole-Parmer EW-00354-JI
1/8" Tubing Cole-Parmer EW-06605-27
1/16" Tubing Cole-Parmer EW-06407-41
1/16" Fittings Cole-Parmer EW-30486-70
1/8" Fittings Kiowa QSM-B-M5-3-20
Microcontroller Adafruit 50 Arduino UNO R3
Continuous Rotation Servo Adafruit 154
Standard Servo Adafruit 1142
Power Supply Adafruit 658
Servo Shield SainSmart 20-011-905
Switches Parts Express 060-376
0.45 Micron Filters EMD Millipore SLHV033RS
Potentiostat Gamry PCI4
Sonicator MRC DC-150H
Connex 3D Printer Stratasys Objet Connex
Veroclear  Stratasys RGD810  transparent polymer for printing flow cell
Tangoblack-plus Stratasys FLX980 soft rubbery polymer for gasket layers on flow cell

Riferimenti

  1. Guo, W., Ngo, H. -. H., Li, J. A mini-review on membrane fouling. Bioresource technol. 122, 27-34 (2012).
  2. Fane, A. G., Fell, C. J. D. A review of fouling and fouling control in ultrafiltration. Desalination. 62, 117-136 (1987).
  3. Tang, C. Y., Chong, T. H., Fane, A. G. Colloidal interactions and fouling of NF and RO membranes: a review. Adv. colloid interfac. 164 (1-2), 126-143 (2011).
  4. De Jong, J., Lammertink, R. G. H., Wessling, M. Membranes and microfluidics: a review. Lab on a chip. 6 (9), 1125-1139 (2006).
  5. Haas, R., Gutman, J., et al. Glycosphingolipids Enhance Bacterial Attachment and Fouling of Nanofiltration Membranes. Environ. Sci. Technol. Lett. 2, (2015).
  6. Nabe, A. Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions. J. Membr. Sci. 133 (1), 57-72 (1997).
  7. Ang, W., Elimelech, M. Protein (BSA) fouling of reverse osmosis membranes: Implications for wastewater reclamation. J. Membr. Sci. 296 (1-2), 83-92 (2007).
  8. Bernstein, R., Belfer, S., Freger, V. Surface modification of dense membranes using radical graft polymerization enhanced by monomer filtration. Langmuir. 26 (14), 12358-12365 (2010).
  9. Kaufman, Y., Kasher, R., Lammertink, R. G. H., Freger, V. Microfluidic NF/RO separation: Cell design, performance and application. J. Membr. Sci. 396, 67-73 (2012).
  10. Kaufman, Y., et al. Towards supported bolaamphiphile membranes for water filtration: Roles of lipid and substrate. J. Membr. Sci. 457, 50-61 (2014).
check_url/it/53556?article_type=t

Play Video

Citazione di questo articolo
Wardrip, N. C., Arnusch, C. J. Three-Dimensionally Printed Microfluidic Cross-flow System for Ultrafiltration/Nanofiltration Membrane Performance Testing. J. Vis. Exp. (108), e53556, doi:10.3791/53556 (2016).

View Video