Summary

研究Wnt信号传导过程中的航空公司图案

Published: October 16, 2016
doi:

Summary

利用耦合到整装报告小鼠和切片染色,显微镜和体内试验方便的呼吸道的正常图案形成底层机制的分析。在这里,我们将介绍这些技术如何促进Wnt信号的气管发育过程中的分析。

Abstract

Wnt signaling pathways play critical roles during development of the respiratory tract. Defining precise mechanisms of differentiation and morphogenesis controlled by Wnt signaling is required to understand how tissues are patterned during normal development. This knowledge is also critical to determine the etiology of birth defects such as lung hypoplasia and tracheobronchomalacia. Analysis of earliest stages of development of respiratory tract imposes challenges, as the limited amount of tissue prevents the performance of standard protocols better suited for postnatal studies. In this paper, we discuss methodologies to study cell differentiation and proliferation in the respiratory tract. We describe techniques such as whole mount staining, processing of the tissue for confocal microscopy and immunofluorescence in paraffin sections applied to developing tracheal lung. We also discuss methodologies for the study of tracheal mesenchyme differentiation, in particular cartilage formation. Approaches and techniques discussed in the current paper circumvent the limitation of material while working with embryonic tissue, allowing for a better understanding of the patterning process of developing conducting airways.

Introduction

呼吸道发展是通过用Nkx2.1阳性细胞中的腹侧内胚层前肠1,2-外观胚胎9天(E9)来启动。食管-气管套管分离将E11.5解决将管可以区分为不同的实体,分别由间质组织3所包围。 Wnt信号起着呼吸道作为WNT2WNT2B缺失的说明书中的关键作用,通过从内胚呼吸道上皮内脏间质和β连环蛋白的缺失表达将导致肺发育不全4,5。我们先前的研究确定删除WLS,所有的Wnt配体的受体货物介导的分泌,从肺发育不良的内胚呼吸道结果,肺血管发展和气管间质6,7的错误图案的缺陷。这些数据支持这样的上皮 – 间质CRO的重要性SS交谈在细胞分化和说明书中,因为它也已在其它研究8,9所示。

肺发育的最初阶段的研究依赖于遗传, 使我们能够更好地理解机制驾驶呼吸身份10-16 体外体外技术。在空气液体相间全肺外植体培养已被广泛用来研究肺分支形态10,17,18的早期阶段的生长因子的作用。虽然这种方法被用作形态学变化,如分支形态和基因表达的调制读出,它是有限的发育过程的早期阶段的研究中,作为培养本身不支持脉管17的发展。气管软骨的发展需要更长的孵化时间,可能与此培养技术不兼容。

要analyzÈ呼吸道形成过程中的Wnt信号传导的作用,我们已经适应的标准技术,以满足我们的胚胎的研究的需要。我们已经修改卷,染色次,石蜡包埋和定时气管,肺组织清算处理循环。优化在本研究中所描述的技术的主要目的是分析气管发展的早期阶段中所发生从E11到E14.5小鼠。使用报告小鼠线Axin2LacZ在发展中国家间质气管的Wnt我们/β-catenin的活动的精确确定地点。我们还适合整装气管组织凝集素染色的过程。因此,我们能够想象的间充质凝结和预测网站,软骨会发生。整装和WlsShhCre小鼠,加上先进的显微技术获得的胚胎组织切片,染色使我们能够推出由TRA所产生的Wnt配体的作用CHEAL上皮气管图案。

Protocol

动物饲养在无病原体的条件。小鼠根据由CCHMC机构动物护理和使用委员会(俄亥俄州辛辛那提美国)批准的方案进行处理。在这些研究中使用的小鼠保持在混合的背景。 1.全山的X半乳糖苷酶染色安乐死怀孕的女性在E11.5至E14.5,用CO 2吸入。放置的动物在CO 2室中,该腔室用CO 2进行充电。保持在腔室的动物为5分​​钟最小值。颈椎脱位安乐死进?…

Representative Results

的Wnt /β-catenin的活性从记者紫胶的Axin2小鼠-Z分离出11胚胎气管,肺组织中检测到整装紫胶-Z染色。染色网站注明的Wnt /β-catenin的活动。整装染色的切片的分析中确定的Wnt /β-catenin的活性存在于气管的间质和在显影肺部周边区域的间质。在WlsShhCre胚胎(其中,从呼吸道的上皮的Wnt配体的分泌?…

Discussion

事件呼吸道的形态底层不完全了解,特别是用于传导气道的图案化所需的过程。先前的研究已利用离体技术,其特征在于显影外植体在空气-液体相间培养或嵌入在基质胶21,22。这些研究已经表明生长因子如何影响显影气管的构图和气管软骨的形成。一个限制到这些研究是该组织的结构没有正确保持,因此,他们可能不太概括软骨的体内过程。

图案形成<em…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们承认麦克Muntifering和马特Kofron激光共聚焦成像和盖尔马科与组织程序的帮助。这项工作是部分由卫生NHLBI全国学院(K01HL115447到DS)的支持。

Materials

Anti Sox9 ab. Millipore AB5535 1:400 , rabbit
Anti Sox9 ab. Santa Cruz Sc-20095 1:50, rabbit
Anti Smooth Muscle Actin ab. Sigma A5228 1:2k, mouse
Anti NKX2.1 ab. Seven Hills n/a 1:100, guinea pig
Anti NKX2.1 ab. Seven Hills n/a 1:400, mouse
Anti Brdu ab. Abcam AB1893 1:200, sheep
Anti Brdu ab. Santa Cruz Sc-32323 1:4k, mouse
PNA Lectin Sigma L 7381
Secondary antibodies Life technologies Alexa fluor Molecular probes
K3Fe(CN)6 Sigma P8131
K4Fe(CN)6 Sigma-Aldrich P3289
MgCl2 Sigma-Aldrich M9272
NaDOC Life Technologies 89905
NP4O Life Technologies 85124
Alcian Blue 8GX Sigma A-3157
Fisher brand super-frost plus Fisher 12-550-15
PFA (16%) EMS 15710
PBS Gibco 70011-044
Fetal Calf Serum Sigma 11K413
Blocking reagent Invitrogen Component of TSA kit #2    ( T20932)
BrDu Sigma B5002-5g
Vectashield mounting medium Vector labs H-1000
Permount Fisher SP15-500
Tissue-loc cassettes Histoscreen Fisher C-0250-GR
Biopsy cassettes Premiere BC0109 Available in different colors
Nuclear fast red  Kernechtrot 0.1% Sigma N3020
Citric acid Sigma C1909-500G
Sodium citrate tribasic dihydrate Sigma S4641-1Kg
Trizma hydrochloride Sigma T5941-500G
Xylene Pharmco-AAPER 399000000
Ethanol Pharmco-AAPER 111000200
Micro knives FST 10318-14
Dumont #5 ceramic coated FST 11252-50
Dumont #5CO FST 11295-20
Dumont # 5 FST 91150-20
Thermo/Shandon Excelsior ES Thermo Fisher
Microtome Leica RM2135
Nikon i90 Nikon Wide field microscope
NikonA1Rsi Nikon Confocal microscopy. Settings:NikonA1 plus camera, scanner: Galvano, detector:DU4. Optics Plan Apo lambda 10x. Modality: Widefield fluorescence laser confocal. 
Leica MS 16 FA Leica Fluorescence Dissecting microscope
Zeiss Zeiss Automated fluorescence microscope
Leica Application suite Leica Leica imaging software
NIS Nikon Nikon imaging software
IMARIS Bitplane Imaging processing software

Riferimenti

  1. Maeda, Y., Dave, V., Whitsett, J. A. Transcriptional control of lung morphogenesis. Physiol Rev. 87, 219-244 (2007).
  2. Morrisey, E. E., Hogan, B. L. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 18, 8-23 (2010).
  3. Fausett, S. R., Klingensmith, J. Compartmentalization of the foregut tube: developmental origins of the trachea and esophagus. Wiley Interdiscip Rev Dev Biol. 1, 184-202 (2012).
  4. Goss, A. M., et al. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell. 17, 290-298 (2009).
  5. Harris-Johnson, K. S., Domyan, E. T., Vezina, C. M., Sun, X. beta-Catenin promotes respiratory progenitor identity in mouse foregut. Proc Natl Acad Sci U S A. 106, 16287-16292 (2009).
  6. Cornett, B., et al. Wntless is required for peripheral lung differentiation and pulmonary vascular development. Dev Biol. 379, 38-52 (2013).
  7. Snowball, J., Ambalavanan, M., Whitsett, J., Sinner, D. 34;Endodermal Wnt signaling is required for tracheal cartilage formation". Dev Biol. , (2015).
  8. Shannon, J. M., Hyatt, B. A. Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol. 66, 625-645 (2004).
  9. Shannon, J. M., Nielsen, L. D., Gebb, S. A., Randell, S. H. Mesenchyme specifies epithelial differentiation in reciprocal recombinants of embryonic lung and trachea. Dev Dyn. 212, 482-494 (1998).
  10. Li, C., et al. Wnt5a regulates Shh and Fgf10 signaling during lung development. Dev Biol. 287, 86-97 (2005).
  11. Loscertales, M., Mikels, A. J., Hu, J. K., Donahoe, P. K., Roberts, D. J. Chick pulmonary Wnt5a directs airway and vascular tubulogenesis. Development. 135, 1365-1376 (2008).
  12. Yin, Y., et al. An FGF-WNT gene regulatory network controls lung mesenchyme development. Dev Biol. 319, 426-436 (2008).
  13. Shu, W., et al. Wnt/beta-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev Biol. 283, 226-239 (2005).
  14. Bretholz, A., Morrisey, R., Hoffman, R. S. The use of OpdA in rat models of organic phosphorus (OP) poisoning. Toxicology. 257, (2009).
  15. Goss, A. M., et al. Wnt2 signaling is necessary and sufficient to activate the airway smooth muscle program in the lung by regulating myocardin/Mrtf-B and Fgf10 expression. Dev Biol. 356, 541-552 (2011).
  16. Mucenski, M. L., et al. beta-Catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem. 278, 40231-40238 (2003).
  17. Hyatt, B. A., Shangguan, X., Shannon, J. M. FGF-10 induces SP-C and Bmp4 and regulates proximal-distal patterning in embryonic tracheal epithelium. Am J Physiol Lung Cell Mol Physiol. 287, L1116-L1126 (2004).
  18. Del Moral, P. M., et al. VEGF-A signaling through Flk-1 is a critical facilitator of early embryonic lung epithelial to endothelial crosstalk and branching morphogenesis. Dev Biol. 290, 177-188 (2006).
  19. Ott, S. R. Confocal microscopy in large insect brains: zinc-formaldehyde fixation improves synapsin immunostaining and preservation of morphology in whole-mounts. J Neurosci Methods. 172, 220-230 (2008).
  20. Jahrling, N., Becker, K., Dodt, H. U. 3D-reconstruction of blood vessels by ultramicroscopy. Organogenesis. 5, 145-148 (2009).
  21. Park, J., et al. Regulation of Sox9 by Sonic Hedgehog (Shh) is essential for patterning and formation of tracheal cartilage. Dev Dyn. 239, 514-526 (2010).
  22. Elluru, R. G., Thompson, F., Reece, A. Fibroblast growth factor 18 gives growth and directional cues to airway cartilage. Laryngoscope. 119, 1153-1165 (2009).
  23. Ahnfelt-Ronne, J., et al. An improved method for three-dimensional reconstruction of protein expression patterns in intact mouse and chicken embryos and organs. J Histochem Cytochem. 55, 925-930 (2007).
  24. Yang, B., et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 158, 945-958 (2014).
  25. Gillotte, D. M., Fox, P. L., Mjaatvedt, C. H., Hoffman, S., Capehart, A. A. An in vitro method for analysis of chondrogenesis in limb mesenchyme from individual transgenic (hdf) embryos. Methods Cell Sci. 25, 97-104 (2003).
  26. Cohen, E. D., et al. Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway. J Clin Invest. 119, 2538-2549 (2009).
  27. Boucherat, O., et al. Partial functional redundancy between Hoxa5 and Hoxb5 paralog genes during lung morphogenesis. Am J Physiol Lung Cell Mol Physiol. 304, L817-L830 (2013).

Play Video

Citazione di questo articolo
Snowball, J., Ambalavanan, M., Sinner, D. Studying Wnt Signaling During Patterning of Conducting Airways. J. Vis. Exp. (116), e53910, doi:10.3791/53910 (2016).

View Video