Summary

从多能干细胞使用BMP拮抗剂Grem2心房心肌细胞分化

Published: March 10, 2016
doi:

Summary

Generating cardiomyocytes from pluripotent stem cells in vitro allows access to large amounts of cardiac tissue in vitro for basic science and clinical applications. This protocol uses the atrializing factor Grem2 to both increase the numbers of cardiomyocytes obtained and to generate cardiomyocytes with an atrial phenotype.

Abstract

用于从多能干细胞的心肌细胞的种群的协议已被开发,但是这些通常会产生混合的表型的细胞。热衷于追求涉及特定肌细胞亚型研究的研究人员需要更定向分化的方法。通过处理小鼠胚胎干细胞(ES)与Grem2,分泌的BMP拮抗剂,它是必要的体内心房腔室的形成,可以产生具有一个心房的表型的大量心脏细胞的。改造的MYH6-DsRed的-NUC多能干细胞系的使用允许识别,选择和心肌细胞的纯化。在这个协议中胚状体是从使用悬滴法MYH6-DsRed的-NUC细胞产生的,并保持在悬浮液中,直到分化第4天(D4)。在D4细胞用Grem2处理并铺板于明胶包被的平板。 D8之间-D10大承包领域的文化观察,继续扩大和M通过D14 ATURE。分子,组织学和electrophysiogical分析表明细胞Grem2处理的细胞获得心房状特性提供一种在体外模型来研究心房心肌细胞的生物学和它们对各种药剂的响应。

Introduction

多能干细胞用于产生和从困难宿主研究细胞到访问组织的基础研究和临床前研究,特别是在人类中1-5的有力工具。发育信号通路的合适的调制可以直接多能干细胞分化为所需表型的命运。许多协议已被开发,以产生从多能干细胞6-14心肌(CMS)。这些协议通常包括TFGβ超家族(活化素,BMP和TGF-β)和Wnt通过定时加入外源性生长因子和/或小分子10,12-15途径调制。这些协议是在增加了成为的CM细胞的百分比通常是有效的,但缺乏特异性,产生代表心房,心室和节点/传导系统谱系细胞的混合群。为了研究心肌特异性亚型更定向分化Appro公司ACH是必需的。

Gremlin2(Grem2,也被称为蛋白相关丹和地狱犬或PRDC的简称)是一种分泌BMP拮抗剂,在斑马鱼16心脏发育过程中是必要进行适当的心脏分化和心房腔的形成。治疗分化胚胎干细胞与Grem2在分化第4天,只是中胚层标记物的T的Brachyury和Cerberus的样1的峰表达后,增加的CM的产率,并产生主要心房谱系14的细胞池。

重组Grem2用于治疗的分化细胞,并且可以使用标准蛋白质的生产技术17制成,或者可以商购买到。它是在水溶液中高度可溶,并且可以在期望的时间点外源添加到培养物。

分化可以利用RT-qPCR的量化标记代表的表达来跟踪心血管祖细胞,心脏祖细胞,并致力于CMS。免疫也​​可用于识别和可视化心脏细胞类型的空间分布。

使用报告系统,以鉴定和分离的CM时,需要纯群体应用更容易进行。为此,我们推出了αMHC-DsRedNuc建设成为鼠标CGR8胚胎干细胞系14。 CGR8细胞生长和保持多能性无饲养细胞,促进扩增和分化测定18。在ES细胞系含有与心脏特异性的α-肌球蛋白重链(αMHCMYH6)基因启动子下一个核定位信号的DsRed荧光蛋白编码序列。利用这些细胞,CM的可以容易地鉴定和分离为定量,细胞分选,电生理学,药物筛选,并研究心房分化的机制。

Protocol

1.准备细胞培养基,解决方案和试剂。 制成500毫升之小鼠胚胎干细胞的(MESC)通过混合和无菌过滤(0.2微米孔径)445毫升格拉斯哥最低必需培养基(GMEM),将50ml热灭活的小牛血清(FBS),媒体5毫升100X浓缩的L-谷氨酰胺置换,5微升的重组小鼠白血病抑制因子(LIF)以每毫升1×10 7个单位,和1.43微升β-巯基乙醇(终浓度为50μM)。在4℃保存待用。 通过混合和无菌过滤制成500?…

Representative Results

在微分之前,多能干细胞应紧凑和自由自发分化。在图1A所示的细胞准备被singularized并用于在协议部分5.1中所述悬滴。在图1B所示的细胞自发分化,不应该被用于制备悬滴的。 包括在图面板2示成功地形成的EB在分化天2.质量的EB通常形成最佳内均匀地隔开,以及圆形挂下降, <st…

Discussion

该协议通常产生培养物与那些心房谱系特征的CM的高百分比。正如任何分化方案之前,分化mESCs的质量应给予特别的注意。 mESCs应定期监测适当的形态( 图1A)。该形成的EB的前发生的任何自发分化将严重限制心脏发生的效率,应传代( 图1B)之前被移除。 EB大小也影响心脏发生。 200和1000元之间的EB启动细胞的数量已经过测试,每500 EB常规的细胞产生的CM的最高数字。被前…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

“:在调查培训计划在心血管机制”(JB)这项工作是由美国国立卫生研究院资助HL083958和HL100398(AKH)和2T32HL007411-33支持。

Materials

GMEM Life Technologies 11710
FBS Life Technologies 10082
Glutamax Life Technologies 35050
LIF EMD Millipore ESG1107
ß-Mercaptoethanol Sigma M3148
IMDM Sigma I3390
Non-Essential Amino Acids Sigma M7145
10 cm Tissue Culture Plates Sarstedt 83.3902
10 cm Bacterial Petri Dishes VWR 25384-342
6 cm Bacterial Petri Dishes VWR 25384-092
6-well tissue culture plates Sarstedt 83.3920
Gremlin 2 recombinant protein R&D Systems 2069-PR-050
Sterile filter units Thermo Fisher 09-741-02
Gelatin (from porcine skin) Sigma G1890
10X PBS, Sterile Sigma P5493
BSA  Sigma 5470
0.05% Trypsin-EDTA solution Life Technologies 25300054
DPBS, no Calcium, no Magnesium Life Technologies 14200

Riferimenti

  1. Loya, K., Eggenschwiler, R., et al. Hepatic differentiation of pluripotent stem cells. Biological Chemistry. 390 (10), 1047-1055 (2009).
  2. Narazaki, G., Uosaki, H., et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation. 118 (5), 498-506 (2008).
  3. Zhang, Y., Pak, C., et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 78 (5), 785-798 (2013).
  4. Park, I. H., Arora, N., et al. Disease-specific induced pluripotent stem cells. Cell. 134 (5), 877-886 (2008).
  5. Golos, T. G., Giakoumopoulos, M., Garthwaite, M. A. Embryonic stem cells as models of trophoblast differentiation: progress, opportunities, and limitations. Reproduction. 140 (1), 3-9 (2010).
  6. Boheler, K. R., Czyz, J., Tweedie, D., Yang, H. T., Anisimov, S. V., Wobus, A. M. Differentiation of pluripotent embryonic stem cells Into cardiomyocytes. Circulation Research. 91 (3), 189-201 (2002).
  7. Burridge, P. W., Anderson, D., et al. Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells. 25 (4), 929-938 (2007).
  8. Cai, C. L., Liang, X., et al. Isl1 Identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Developmental Cell. 5 (6), 877-889 (2003).
  9. Fujiwara, M., Yan, P., et al. Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with Cyclosporin-A. PLoS ONE. 6 (2), e16734 (2011).
  10. Rai, M., Walthall, J. M., Hu, J., Hatzopoulos, A. K. Continuous antagonism by Dkk1 counter activates canonical wnt signaling and promotes cardiomyocyte differentiation of embryonic stem cells. Stem Cells and Development. (1), 54-66 (2012).
  11. Burridge, P. W., Matsa, E., et al. Chemically defined generation of human cardiomyocytes. Nature Methods. 11 (8), 855-860 (2014).
  12. Lian, X., Zhang, J., et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nature Protocols. 8 (1), 162-175 (2013).
  13. Zhang, J., Klos, M., et al. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circulation Research. 111 (9), 1125-1136 (2012).
  14. Tanwar, V., Bylund, J. B., et al. Gremlin 2 promotes differentiation of embryonic stem cells to atrial fate by activation of the JNK signaling pathway. Stem Cells. 32 (7), 1774-1788 (2014).
  15. Kattman, S. J., Witty, A. D., et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 8 (2), 228-240 (2011).
  16. Müller, I. I., Melville, D. B., et al. Functional modeling in zebrafish demonstrates that the atrial-fibrillation-associated gene GREM2 regulates cardiac laterality, cardiomyocyte differentiation and atrial rhythm. Disease Models & Mechanisms. 6 (2), 332-341 (2013).
  17. Kattamuri, C., Luedeke, D. M., Thompson, T. B. Expression and purification of recombinant protein related to DAN and cerberus (PRDC). Protein Expression and Purification. 82 (2), 389-395 (2012).
  18. Schulz, H., Kolde, R., et al. The FunGenES Database: A genomics resource for mouse embryonic stem cell differentiation. PLoS ONE. 4 (9), e6804 (2009).
  19. . Phosphate-buffered saline (PBS). Cold Spring Harbor Protocols. , (2006).
  20. Livak, K. J., Schmittgen, T. D. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2−ΔΔCT method. Methods. 25 (4), 402-408 (2001).
  21. Beck, H., Semisch, M., Culmsee, C., Plesnila, N., Hatzopoulos, A. K. Egr-1 regulates expression of the glial scar component phosphacan in astrocytes after experimental stroke. American Journal of Pathology. 173 (1), 77-92 (2008).
  22. Graham, E. L., Balla, C., Franchino, H., Melman, Y., del Monte, F., Das, S. Isolation, culture, and functional characterization of adult mouse cardiomyoctyes. Journal of Visualized Experiments. (79), (2013).
  23. Brown, A. L., Johnson, B. E., Goodman, M. B. Patch clamp recording of ion channels expressed in Xenopus oocytes. Journal of Visualized Experiments. (20), (2008).
  24. Brown, A. L., Johnson, B. E., Goodman, M. B. Making patch-pipettes and sharp electrodes with a programmable puller. Journal of Visualized Experiments. (20), (2008).
  25. Sachinidis, A., Fleischmann, B. K., Kolossov, E., Wartenberg, M., Sauer, H., Hescheler, J. Cardiac specific differentiation of mouse embryonic stem cells. Cardiovascular Research. 58 (2), 278-291 (2003).
  26. Keller, G. M. In vitro differentiation of embryonic stem cells. Current Opinion in Cell Biology. 7 (6), 862-869 (1995).
  27. Höpfl, G., Gassmann, M., Desbaillets, I. Differentiating embryonic stem cells into embryoid bodies. Volume 2: molecular embryo analysis, live imaging, transgenesis, and cloning. Methods in Molecular Biology. , 254-279 (2004).
  28. Ao, A., Williams, C. H., Hao, J., Hong, C. C. Modified mouse embryonic stem cell based assay for quantifying cardiogenic Induction Efficiency. Journal of Visualized Experiments. (50), (2011).
  29. Antonchuk, J., Gassmann, M., Desbaillets, I. Formation of embryoid bodies from human pluripotent stem cells using AggreWell™ plates. Basic Cell Culture Protocols. 946, 523-533 (2013).
  30. Horii, T., Nagao, Y., Tokunaga, T., Imai, H. Serum-free culture of murine primordial germ cells and embryonic germ cells. Theriogenology. 59 (5-6), 1257-1264 (2003).
check_url/it/53919?article_type=t

Play Video

Citazione di questo articolo
Bylund, J. B., Hatzopoulos, A. K. Differentiation of Atrial Cardiomyocytes from Pluripotent Stem Cells Using the BMP Antagonist Grem2. J. Vis. Exp. (109), e53919, doi:10.3791/53919 (2016).

View Video