Summary

En Årehinden Plexus epitelcelle-baserede Model af Menneskeblod-cerebrospinalvæske Barrier at studere bakteriel infektion fra den basolaterale side

Published: May 06, 2016
doi:

Summary

The epithelial cells of the choroid plexus (CP) form the blood-cerebrospinal fluid barrier (BCSFB). An in vitro model of the BCSFB employs human choroid plexus papilloma (HIBCPP) cells. This article describes culturing and basolateral infection of HIBCPP cells using a cell culture filter insert system.

Abstract

The epithelial cells of the choroid plexus (CP), located in the ventricular system of the brain, form the blood-cerebrospinal fluid barrier (BCSFB). The BCSFB functions in separating the cerebrospinal fluid (CSF) from the blood and restricting the molecular exchange to a minimum extent. An in vitro model of the BCSFB is based on cells derived from a human choroid plexus papilloma (HIBCPP). HIBCPP cells display typical barrier functions including formation of tight junctions (TJs), development of a transepithelial electrical resistance (TEER), as well as minor permeabilities for macromolecules. There are several pathogens that can enter the central nervous system (CNS) via the BCSFB and subsequently cause severe disease like meningitis. One of these pathogens is Neisseria meningitidis (N. meningitidis), a human-specific bacterium. Employing the HIBCPP cells in an inverted cell culture filter insert system enables to study interactions of pathogens with cells of the BCSFB from the basolateral cell side, which is relevant in vivo. In this article, we describe seeding and culturing of HIBCPP cells on cell culture inserts. Further, infection of the cells with N. meningitidis along with analysis of invaded and adhered bacteria via double immunofluorescence is demonstrated. As the cells of the CP are also involved in other diseases, including neurodegenerative disorders like Alzheimer`s disease and Multiple Sclerosis, as well as during the brain metastasis of tumor cells, the model system can also be applied in other fields of research. It provides the potential to decipher molecular mechanisms and to identify novel therapeutic targets.

Introduction

Blod-cerebrospinalvæske barriere (BCSFB) er en af de tre barriere sites mellem blodet og hjernen 1. Dens morfologiske korrelat er de epitelceller i choroid plexus (CP) 2,3, en endotel-epitel sammenfoldede, som er stærkt vaskulariseret og placeret i ventriklerne i hjernen. CP tjener til frembringelse cerebrospinalvæsken (CSF) samt at adskille dem fra blodet. For at opnå barrierefunktion, CP epitelceller viser en lav pinocytotic aktivitet, udtrykke specifikke transportører, og er tæt forbundet med en kontinuerligt netværk af tight junctions (TJs) 2,3.

Human choroid plexus papillom (HIBCPP) celler, der er afledt af en malign choroid plexus papilloma af en japansk kvinde 4, blev anvendt til at konstruere en funktionel in vitro model af BCSFB. HIBCPP celler viser et par karakteristika for en funktionel BCSFB dannelsen af ​​TJtråde, udvikling af en høj transepithelial membran potentiale, der kan bestemmes som transepithelial elektriske modstand (TEER), og mindre permeabiliteter til makromolekyler. Desuden HIBCPP celler udtrykker karakteristiske transportører, der kan tjene til at regulere den ioniske mikromiljø, og viser apikale / basolaterale polaritet 5,6,7.

Den BCSFB har vist sig at fungere som en indgang site for patogener (bakterier, virus og svampe) i centralnervesystemet (CNS) 8. Invasionen af patogener, herunder Neisseria meningitidis (N. meningitidis), en Gram-negativ bakterie, kan forårsage alvorlige sygdomme som meningitis. Bevis for, at den overvinder den beskyttende epitel barriere af CP er støttet af histopatologiske observationer i patienter med meningokoksygdom udviser forøgede mængder af meningokokker i skibene og CP epitelceller 9,10. For at få adgang i værtsceller bacteria ofte kapre endocytotiske mekanismer, som medieres eller udløses af specifikke overfladereceptorer placeret på værtscellerne. Da interaktioner af patogener med disse receptorer kan være artsspecifikke 11, dyremodeller kan kun høres i begrænset omfang. Den HIBCPP cellelinien giver mulighed for at studere invasionen proces samt de underliggende molekylære mekanismer i et humant modelsystem. Anvender cellekultur indsætter kan vi analysere interaktioner af patogener med værtsceller fra to forskellige celle sider. Mange bakterier, herunder N. meningitidis, er stærkt underlagt virkningen af tyngdekraften under infektion analyser. For optimal interaktion af patogener med HIBCPP celler under assayene bakterierne oprindeligt tilsat til det øvre kammer i cellekultur filterindsatsen system. At muliggøre infektion fra det apikale eller den basolaterale celle side, henholdsvis har to variationer af in vitro system været established: I standardsystem HIBCPP celler podes ind i det øvre kammer af filterindsatsen, efterligne situationen, når mikroorganismer er placeret på CSF-side og komme i kontakt med den apikale side af cellerne (figur 1A, C). I modsætning hertil ved hjælp af de HIBCPP celler i et omvendt cellekultur filterindsats systemet afspejler vilkårene når bakterier har indtastet blodbanen. Mikroorganismer formidler i blodet og støder CP epitelceller fra den basolaterale side (figur 1B, D). Bemærkelsesværdigt, i dette modelsystem er det blevet vist, at bakterier invaderer HIBCPP celler i et polært mode specifikt fra den basolaterale celleside 5,7.

Efterfølgende til infektion af CP, kan de invaderede patogener genkendes af det medfødte immunsystem gennem ligation til mønster-genkendelse receptorer (PRRS). Velbeskrevne medlemmer af PRRS tilhører Toll-lignende receptor (TLR) -familien. TLRs kan bind til karakteristiske strukturer af infektiøse mikroorganismer, der betegnes patogen-associeret molekylære mønstre (PAMPs). Ligering af receptorerne resulterer i aktivering af værtscelle signaleringskaskader, der udløser ekspressionen af cytokiner og chemokiner 12, som igen stimulerer transmigration af immunceller over BCSFB 13,14. Det er blevet vist, at HIBCPP celler udtrykker adskillige TLR'er på mRNA-niveau og at infektion med N. meningitidis resulterer i sekretion af adskillige cytokiner og chemokiner, herunder CXCL1-3, IL6, IL8 og TNFa 15,16.

Her beskriver vi dyrkning og infektion af den humane cellelinie HIBCPP i en omvendt celledyrkningsinsert system, der efterligner BCSFB. Denne model system muliggør at studere interaktioner af patogener med in vivo relevante basolaterale celle side samt den efterfølgende cellulære respons.

Protocol

1. Forbered Cell Culture Filter Indsatser til Seeding HIBCPP Celler i en omvendt Model System Pre-varm DMEM / F12 (Ham) suppleret med 5 pg / ml insulin, 100 U / ml penicillin, 100 ug / ml streptomycin og 10% føtalt kalveserum (FCS). Brug steril pincet til at placere 0,33 cm² vækstområde cellekultur filterindsatse med en porestørrelse på 3 um på hovedet ind i en 12-brønds plade (figur 1E). Fyld medium ind i det nedre rum i cellekultur filterindsatsen (ca. 3 ml) og 1…

Representative Results

Her beskriver vi dyrkning og infektion af HIBCPP celler i et omvendt celledyrkningsinsert system. Denne model tillader os at studere invasion mekanismer og de ​​underliggende molekylære signalveje fra den basolaterale celle side, frembringes et fysiologisk forhold af bakterier udbreder og ind epitelceller via blodbanen (figur 1). De HIBCPP celler vise bestemte barriere funktioner, som gør dem i stand til…

Discussion

Epitelcellerne af CP danne BCSFB der adskiller CSF fra blodet 2,3. Vi har for nylig etableret HIBCPP cellelinie som en funktionel menneskelig model af BCSFB. Cellerne vise vigtige barriere funktioner BCSFB in vitro, herunder udvikling af en høj membranpotentiale, en lav permeabilitet for makromolekyler, såvel som tilstedeværelse af kontinuerlige strenge af TJs 5. TJ proteiner bidrager til en apikal / basolaterale polaritet af cellerne. Polariteten er af stor betydning for en rettet loka…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Prof. Hartwig Wolburg for performing the electron microscopy.

Materials

0.25% Trypsin-EDTA Gibco 25200-056
4´,6 diamidino-2-phenylindole (DAPI) Life Technologies D1306
12-well plates Starlab CC7682-7512
24-well plates Starlab CC7682-7524
Anti Neisseria meningitidis α-OMP This antibody was a gift from Drs. H. Claus and U. Vogel (University of Würzburg, Germany)
Alexa Fluor 488 (chicken anti rabbit) Invitrogen A21441
Alexa Fluor 594 (chicken anti rabbit) Invitrogen A21442
Alexa Fluor 660 Phalloidin Invitrogen A22285
Bovine serum albumine (BSA) Calbiochem 12659
Chocolate agar plates Biomerieux 43109
Cytochalasin D Sigma C8273
DMEM/F12 + L-Glut + 15 mM HEPES Gibco 31330-095
DMEM/F12 + L-Glut + 15 mM HEPES w/o Phenolred Gibco 11039-047
Dimethyl sulfoxide Sigma D2650
Fetal calf serum (FCS) Life Technologies 10270106
FITC-Inulin Sigma F3272
Insulin Sigma 19278
MgCl2 Sigma 2393
NaHCO3 Sigma 55761
PBS + Mg +Ca Gibco 14040-174
Penicillin/Streptomycin MP Biomedicals 1670049
Polyvitex Biomerieux 55651
Proteose peptone BD 211684
Serum-free medium Gibco 10902-096
Thincert cell culture inserts for 24-well plates, pore size 3 µm Greiner 662630
Tissue culture flask 75 cm² red cap sterile Greiner 658175
Triton X-100 Sigma T8787
Volt-Ohm Meter Millicell-ERS2 with MERSSTX01 electrode Millipore MERSSTX00

Riferimenti

  1. Abott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., Begley, D. J. Structure and function of the blood-brain barrier. Neurobiol Dis. 37, 13-25 (2009).
  2. Wolburg, H., Paulus, W. Choroid plexus: biology and pathology. Acta Neuropathol. 119, 75-88 (2010).
  3. Engelhardt, B., Sorokin, L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Imunopathol. 31, 497-511 (2009).
  4. Ishiwata, I., Ishiwata, C., Ishiwata, E., Sato, Y., Kiguchi, K., Tachibana, T., et al. Establishment and characterization of a human malignant choroid plexus papilloma cell line (HIBCPP). Hum Cell. 18, 67-72 (2005).
  5. Schwerk, C., Papandreou, T., Schuhmann, D., Nickol, L., Borkowski, J., Steinmann, U., et al. Polar invasion and translocation of Neisseria meningitidis and Streptococcus suis in anovel human model of the blood-cerebrospinal fluid barrier. PloS One. 7, e30069 (2012).
  6. Bernd, A., Ott, M., Ishikawa, H., Schroten, H., Schwerk, C., Fricker, G. Characterization of efflux transport proteins of the human choroid plecus papilloma cell line HIBCPP, a functional in vitro model of the blood-cerebrospinal fluid barrier. Pharm Res. , (2014).
  7. Gründler, T., Quednau, N., Stump, C., Orian-Rousseau, V., Ishikawa, H., Wolburg, H., et al. The surface proteins InlA and InlB are interdependently required for polar basolateral invasion by Listeria monocytogenes in a human model of the blood-cerebrospinal fluid barrier. Microbes Infect. 15, 291-301 (2013).
  8. Schwerk, C., Tenenbaum, T., Kwang, S. K., Schroten, H. The choroid plexus – a multi-role player during infectious diseases of the CNS. Front Cell Neurosci. 9, 80 (2015).
  9. Pron, B., Taha, M. K., Rambaud, C., Fournet, J. C., Pattey, N., Monnet, J. P., et al. Interaction of Neisseria meningtidis with the components of the blood-brain barrier correlates with increased expression of PilC. J Infect Dis. 176, 1285-1292 (1997).
  10. Guarner, J., Greer, P. W., Whitney, A., Shieh, W. J., Fischer, M., White, E. H., Carlone, G. M., et al. Pathogenesis and diagnosis of human meningococcal disease using immunohistochemical and PCR assays assays. Am J Clin Pathol. 122, 754-764 (2004).
  11. Pizarro-Cerda, J., Kuhbacher, A., Cossart, P. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med. 2, (2012).
  12. Beutler, B. Microbe sensing, positive feedback loops and the pathogenesis of inflammatory diseases. Immunol. Rev. 227, 248-263 (2009).
  13. Wilson, E. H., Weninger, W., Hunter, C. A. Trafficking of immune cells in the central nervous system. J Clin Invest. 120, 1368-1379 (2010).
  14. Meeker, R. B., Williams, K., Killebrew, D. A., Hudson, L. C. Cell trafficking through the choroid plexus. Cell Adh Migr. 6, 390-396 (2012).
  15. Borkowski, J., Li, L., Steinmann, U., Quednau, N., Stump-Guthier, C., Weiss, C., et al. Neisseria meningitidis elicits a pro-inflammatory response involving I kappa B zeta in a human blood-cerebrospinal fluid barrier model. J Neuroinflammation. 11, 163 (2014).
  16. Steinmann, U., Borkowski, J., Wolburg, H., Schroppel, B., Findeisen, P., Weiss, C., et al. Transmigration of polymorphnuclear neutrophils and monocytes through the human blood-cerebrospinal fluid barrier after bacterial infection in vitro. J Neuroinflammation. 10, 30 (2013).
  17. McGuiness, B. T., Clarke, I. N., Lambden, P. R., Barlow, A. K., Poolman, J. T., Heckels, J. E. Point mutation in meningococcal por A gene associated with increased endemic disease. Lancet. 337, 514-517 (1991).
  18. Ram, S., Cox, A. D., Wright, J. C., Vogel, U., Getzlaff, S., Boden, R. Neisserial lipopolysaccharide is a target for complement component C4b. inner core phosphoethanolamine residues define C4b linkage specificity. J Biol Chem. 278, 50853-50862 (2003).
  19. Claus, H., Maiden, M. C., Maag, R., Frosch, M., Vogel, U. Many carried meningococci lack the genes required for capsule synthesis and transport. Microbiology. 148, 1813-1819 (2002).
  20. Claus, H., Maiden, M. C., Wilson, D. J., Mccarthy, N. D., Jolley, K. A., Urwin, R., et al. Genetic analysis of meningococci carried by children and young adults. J Infect Dis. 191, 1263-1271 (2005).
  21. Tenenbaum, T., Papandreou, T., Gellrich, D., Friedrichs, U., Seibt, A., Adam, R., et al. Polar bacterial invasion and translocation of Streptococcus suis across the blood-cerebrospinal fluid barrier in vitro. Cell Microbiol. 11, 323-336 (2009).
  22. Laflamme, N., Echchannaoui, H., Landmann, R., Rivest, S. Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Eur J Immunol. 33, 1127-1138 (2003).
  23. Laflamme, S., Rivest, S. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J. 15, 155-163 (2001).
  24. Zughaier, S. M. Neisseria meningitidis capsular polysaccharides indice inflammatory responses via TLR2 and TLR4-MD-2. J Leukoc Biol. 89, 469-480 (2011).
  25. Yamamoto, M., Yamazaki, S., Uematsu, S., Sato, S., Hemmi, M., Hoshino, K., et al. Regulation of Toll/IL-1-receptor -mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature. 430, 218-222 (2004).
  26. Lorenz, J., Zahlten, J., Pollok, I., Lippmann, J., Scharf, S., N’Guessan, P. D., et al. Legionella pheumophila-induced IkappaBzeta-dependent expression of interleukin-6 in lung epithelium. Eur Respir J. 37, 648-657 (2011).
  27. Jaerve, A., Muller, H. W. Chemokines in CNS injury and repair. Cell Tissue Res. 349, 229-248 (2012).
  28. Schneider, H., Weber, C. E., Schoeller, J., Steinmann, U., Borkowski, J., Ishikawa, H., et al. Chemotaxis of T-cells after infection of human choroid plexus papilloma cells with Echovirus 30 in an in vitro model of the blood-cerebrospinal fluid barrier. Virus Res. 170, 66-74 (2012).
  29. Chodobski, A., Szmydynger-Chodobska, J. Choroid plexus: Target for polypeptides and site of their synthesis. Microsc. Res. Tech. 52, 65-82 (2001).
  30. Dickson, P. W., Schreiber, G. High levels of messenger RNA for transthyretin (prealbumin) in human choroid plexus. Neurosci. Lett. 66, 311-315 (1986).
  31. Stylianopoulou, F., Herbert, J., Soares, M. B., Efstratiadis, A. Expression of the insulin-like growth factor II gene in the choroid plexus and the leptomeninges of the adult rat central nervous system. Proc Natl Acad Sci USA. 85, 141-145 (1988).
  32. Lim, L., Zhou, H., Costa, R. H. The winged helix transcription factor HFH-4 is expressed during choroid plexus epithelial development in the mouse embryo. Proc. Natl Acad. Sci. USA. 94, 3094-3099 (1997).
  33. Vandenhaute, E., Stump-Guthier, C., Lasierra Losada, M., Tenenbaum, T., Rudolph, H., Ishikawa, H., et al. The choroid plexus may be an underestimated site of tumor invasion to the brain: an in vitro study using neuroblastoma cell lines. Cancer Cell Int. , 15-102 (2015).
check_url/it/54061?article_type=t

Play Video

Citazione di questo articolo
Dinner, S., Borkowski, J., Stump-Guthier, C., Ishikawa, H., Tenenbaum, T., Schroten, H., Schwerk, C. A Choroid Plexus Epithelial Cell-based Model of the Human Blood-Cerebrospinal Fluid Barrier to Study Bacterial Infection from the Basolateral Side. J. Vis. Exp. (111), e54061, doi:10.3791/54061 (2016).

View Video