Summary

用 CaspaseTracker 生物传感器检测 Anastasis体内

Published: February 01, 2018
doi:

Summary

Anastasis 在技术上具有挑战性检测在体内, 因为逆转细胞死亡过程的细胞可以从形态上区分正常健康细胞。在这里, 我们描述了通过使用我们新近开发的体内CaspaseTracker 生物传感器系统来检测和跟踪在活体动物中 anastasis 的细胞的协议。

Abstract

Anastasis (希腊语为 “上升到生活”) 是最近被发现的细胞补救现象, 藉以垂危的细胞能逆转被假设是固有地不可逆转的晚阶段细胞死亡过程。促进 anastasis 原则上可以挽救或保存难以取代的细胞, 如心肌细胞或神经元, 从而促进组织的恢复。相反, 抑制癌细胞中的 anastasis, 在抗肿瘤治疗后细胞凋亡, 可确保癌细胞死亡, 减少复发几率。然而, 由于缺乏追踪活动物 anastasis 细胞命运的工具, 这些研究受到了阻碍。面临的挑战是确定细胞死亡的过程, 尽管它们在恢复后的形态正常的外观。为了克服这一困难, 我们开发了果蝇和哺乳动物 CaspaseTracker 生物传感器系统, 可以识别和永久跟踪 anastatic 细胞的体外体内。在这里, 我们提出的在体内协议的产生和使用的 CaspaseTracker 双生物传感器系统检测和跟踪 anastasis 在果蝇后短暂接触细胞死亡刺激。虽然传统的生物传感器和协议可以标记细胞积极进行凋亡细胞死亡, CaspaseTracker 传感器可以永久标签细胞已经恢复后, 酶活化-一个标志的晚期细胞凋亡, 并同时确定活动的凋亡过程。这种生物传感器还可以追踪那些直接或间接参与酶活动的其他细胞死亡的细胞的恢复。因此, 这项议定书使我们能够不断追踪这些细胞及其后代的命运, 促进未来的生物学功能、分子机制、生理和病理后果的研究, 以及治疗的意义anastasis我们还讨论了适当的控制, 以区分接受 anastasis 的细胞从那些显示非凋亡的酶活动在体内

Introduction

程序性细胞死亡, 如细胞凋亡, 通过在多细胞生物体中消除不需要的、受伤或危险的细胞, 在胚胎发育和正常的稳态中起重要作用1,2,3。细胞死亡和生存之间的平衡丧失可能导致致命的后果, 如癌症, 心力衰竭, 自身免疫和变性4,5,6,7,8。刽子手半的激活传统上被认为是 “没有返回点” 在细胞凋亡9,10,11, 因为它触发快速和大规模的蜂窝拆除12, 13141516。挑战这一一般教条, 我们证明, 培养的垂死的原细胞和癌细胞不仅可以恢复后酶活化, 而且还遵循重要的细胞死亡标志, 包括细胞膜起泡, 细胞萎缩,线粒体分裂, 线粒体细胞色素c释放到胞, 核和染色质缩合, DNA 损伤, 核分裂, 细胞表面暴露磷脂 (PS), 并形成凋亡体17,18,19,20,21. 我们建议, anastasis 是一种内在的细胞恢复现象, 因为死亡细胞可以恢复后, 细胞死亡的刺激17,18,19,20,21. 我们创造了术语 “Anastasis” (Αναστάσης)18, 这意味着 “上升到生活” 在希腊, 描述这个意想不到的细胞恢复现象。最近的独立研究进一步支持了我们对 anastasis 的观察, 这也显示了在磷脂外化222324、有限的线粒体外部的恢复后的细胞膜性25, 混合谱系激酶样 (MLKL) 的激活, 和单元收缩26

定性的机制调节 anastasis 将有范式转移的生理, 病理和治疗的影响。Anastasis 可能代表一个以前未知的细胞机制, 以抢救或保存重要的 postmitotic 细胞和组织难以取代, 并可能考虑心力衰竭逆转心室卸载左心室辅助设备 (LVADs)27,28, 在瞬态曝光过多光后恢复感光细胞29,3031, 或修复脑损伤后的神经元32。如果这样促进 anastasis 可以增强细胞和组织的恢复。相反, anastasis 可能是一个意想不到的逃生策略, 用于癌症细胞生存细胞死亡诱导治疗, 导致癌症复发17,18。因此, 在癌症治疗期间和之后抑制癌细胞的 anastasis 可能是一种新的治疗癌症的方法, 防止肿瘤复发。

在 anastasis 过程中, 我们发现一些恢复细胞获得永久性的基因改变, 并进行了致癌转化, 可能是由于在细胞凋亡期间发生的 DNA 损伤18,20,21.逆转 DNA 受损细胞的死亡过程可能是一种肿瘤发生的机制, 潜在的潜在的观察, 重复组织损伤增加了癌症的风险在各种组织, 如慢性热损伤的食道诱发由非常热的饮料的消耗量33,34,35, 由于酒精中毒的肝脏损伤36,37, 肿瘤演变在毒性癌症治疗以后38, 39,40, 以及在抗肿瘤治疗周期的间隔期间出现的正常组织的新癌症的发展41,4243,44.如果属实, 靶向 anastasis 可以预防或阻止癌症的发展和进展。我们发现, 饥饿诱导的垂死生殖细胞在再喂食的果蝇19中接受 anastasis。 如果 anastasis 发生在 DNA 损伤的生殖细胞中, 则可以解释长期环境压力促进遗传疾病的发展。例如, 饥荒有助于代遗传性疾病如糖尿病和冠心病的发展,45。因此, 了解 anastasis 可能导致预防这种潜在机制引起的遗传性疾病的战略。

利用 anastasis 的发现, 引导其发展创新的治疗方法, 研究 anastasis 在活体动物中的病因和后果是十分必要的。然而, 在技术上挑战识别和追踪 anastatic 细胞在体内, 因为从细胞死亡过程中恢复的细胞在形态上与正常的健康细胞没有区别, 并且没有生物标志物 anastasis已识别17,18,21。为了解决这些问题, 我们最近开发了一个新的体内酶生物传感器指定的 “CaspaseTracker”19, 以识别和跟踪细胞凋亡后, 酶激活19,46,凋亡的标志10,14。区别于 “实时” 酶生物传感器, 如散射12,47, Apoliner48, CA-GFP49, ApoAlert18,50, C3AIs51和 iCasper52检测正在进行的酶活动, CaspaseTracker 生物传感器另外还具有永久性标记酶活动的细胞的能力, 甚至是瞬时的。因此, CaspaseTracker 生物传感器可以在逆转酶介导的细胞死亡过程的 anastasis 后进行长期跟踪,在体内

Protocol

1) CaspaseTracker 生物传感器蝇的制备 麻醉飞行与 CO2, 并使用画笔将7到10酶敏感的 Gal4 (DQVD)19处女母和7到 10 G 跟踪53 Gal4 记者年轻的雄性苍蝇 (反之亦然) 在同一个小瓶中的苍蝇食品和新鲜酵母糊。注意:交叉的酶敏感 (DQVD) Gal4 和 G 迹蝇将产生 CaspaseTracker 后代苍蝇。跨酶-in 敏感 (DQVA)19 Gal4 和 G 跟踪苍蝇将提供?…

Representative Results

虽然时间推移活细胞显微镜是一种可靠的方法, 以道 anastasis 在培养细胞20, 它是挑战, 以确定哪些细胞已经经历了 anastasis 在动物, 因为恢复细胞出现形态上无法区分从没有尝试过细胞死亡的正常健康细胞。例如, 人宫颈癌 HeLa 细胞显示凋亡的形态学特征1,2,14, 如细胞萎缩, 核冷凝, 和细胞膜起泡, 以响应细胞死亡…

Discussion

CaspaseTracker 双生物传感器系统是一种新颖和独特的工具, 允许检测最近或正在进行的酶活动, 并跟踪细胞已逆转细胞死亡的过程和生存后, 经历了酶活动在体内。虽然酶活动传统上被认为是细胞凋亡的标志, 但越来越多的研究表明, 非凋亡的酶活性在不同的正常细胞功能中扮演着潜在的角色, 如神经元活动的调节79,80,

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢达伦 Obbard 为果蝇图像在图3C 和视频手稿;j ·哈德威克, 韦德吉布森和希瑟 m。这项工作由尤德爵士纪念研究金 (H.L.T.)、Dr. (H.L.T.)、富布赖特奖学金 (H.L.T.)、生命科学研究基金会奖学金 (H.L.T.)、K22 CA204458 (H.L.T.) 资助。Shurl 是生命科学研究基金会 (2014-2017) 的库尔奇基金会研究员。

Materials

CONSUMABLES AND REAGENTS
Vectashield mounting medium Vector Products H-1000 Antifade mounting medium
Vectashield mounting medium (with DAPI) Vector Products H-1200 Antifade mounting medium with DAPI
Forceps Ted Pella #505 (110mm, #5) Dumont tweezer biology grade, stainless steel
Hanging Drop Slides Fisher Scientific 12-565B Glass slides
Hoechst 33342 Molecular Probes H1399 DNA stain
Mitotracker Red CMXRos  Molecular Probes M-7512 Mitochondria stain
Cleaved caspase-3 (Asp175) antibody Cell Signaling Technology #9661 Stain for active fragment of caspase-3
Bovine Serum Albumin (BAS) Sigma-Aldrich A8806 Blocking agent for immunostaining
Phosphate Buffered Saline  VWR 114-056-101 Medium for washing and immunostaining
Triton™ X-100 Sigma-Aldrich T8787 Detergent for cell permeabilization
Name Company Catalog Number Comments
EQUIPMENT
LSM780 confocal microscope Carl Zeiss N/A Imaging
Carl Zeiss Stereomicroscope Stemi 2000  Carl Zeiss N/A Drosophila dissection
AmScope Fiber Optic Dual Gooseneck Microscope Illuminator, 150W AmScope WBM99316  Light source

Riferimenti

  1. Kerr, J. F., Wyllie, A. H., Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26, 239-257 (1972).
  2. Jacobson, M. D., Weil, M., Raff, M. C. Programmed cell death in animal development. Cell. 88, 347-354 (1997).
  3. Fuchs, Y., Steller, H. Programmed cell death in animal development and disease. Cell. 147, 742-758 (2011).
  4. Hanahan, D., Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. 144, 646-674 (2011).
  5. Narula, J., et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 335, 1182-1189 (1996).
  6. Nagata, S. Apoptosis and autoimmune diseases. Ann N Y Acad Sci. 1209, 10-16 (2010).
  7. Mattson, M. P. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 1, 120-129 (2000).
  8. Hotchkiss, R. S., Strasser, A., McDunn, J. E., Swanson, P. E. Cell death. N Engl J Med. 361, 1570-1583 (2009).
  9. Green, D., Kroemer, G. The central executioners of apoptosis: caspases or mitochondria?. Trends Cell Biol. 8, 267-271 (1998).
  10. Riedl, S. J., Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 5, 897-907 (2004).
  11. Kroemer, G., et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3-11 (2009).
  12. Takemoto, K., Nagai, T., Miyawaki, A., Miura, M. Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol. 160, 235-243 (2003).
  13. Luthi, A. U., Martin, S. J. The CASBAH: a searchable database of caspase substrates. Cell Death Differ. 14, 641-650 (2007).
  14. Taylor, R. C., Cullen, S. P., Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 9, 231-241 (2008).
  15. Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J., Green, D. R. The BCL-2 family reunion. Mol Cell. 37, 299-310 (2010).
  16. Julien, O., Wells, J. A. Caspases and their substrates. Cell Death Differ. 24, 1380-1389 (2017).
  17. Tang, H. L., Yuen, K. L., Tang, H. M., Fung, M. C. Reversibility of apoptosis in cancer cells. Br J Cancer. 100, 118-122 (2009).
  18. Tang, H. L., et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol Biol Cell. 23, 2240-2252 (2012).
  19. Tang, H. L., Tang, H. M., Fung, M. C., Hardwick, J. M. In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity. Sci Rep. 5, 9015 (2015).
  20. Tang, H. L., Tang, H. M., Hardwick, J. M., Fung, M. C. Strategies for tracking anastasis, a cell survival phenomenon that reverses apoptosis. J Vis Exp. , (2015).
  21. Tang, H. M., Talbot, C. C., Fung, M. C., Tang, H. L. Molecular signature of anastasis for reversal of apoptosis. F1000Res. 6, 43 (2017).
  22. Hammill, A. K., Uhr, J. W., Scheuermann, R. H. Annexin V staining due to loss of membrane asymmetry can be reversible and precede commitment to apoptotic death. Exp Cell Res. , 16-21 (1999).
  23. Geske, F. J., Lieberman, R., Strange, R., Gerschenson, L. E. Early stages of p53-induced apoptosis are reversible. Cell Death Differ. 8, 182-191 (2001).
  24. Kenis, H., et al. Annexin A5 uptake in ischemic myocardium: demonstration of reversible phosphatidylserine externalization and feasibility of radionuclide imaging. J Nucl Med. 51, 259-267 (2010).
  25. Ichim, G., et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol Cell. 57, 860-872 (2015).
  26. Gong, Y. N., et al. ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences. Cell. 169, 286-300 (2017).
  27. Narula, J., Haider, N., Arbustini, E., Chandrashekhar, Y. Mechanisms of disease: apoptosis in heart failure–seeing hope in death. Nat Clin Pract Cardiovasc Med. 3, 681-688 (2006).
  28. Drakos, S. G., et al. Bridge to recovery: understanding the disconnect between clinical and biological outcomes. Circulation. 126, 230-241 (2012).
  29. McKechnie, N. M., Foulds, W. S. Recovery of the rabbit retina after light damage (preliminary observations). Albrecht Von Graefes Arch Klin Exp Ophthalmol. 212, 271-283 (1980).
  30. Milligan, S. C., Alb, J. G., Elagina, R. B., Bankaitis, V. A., Hyde, D. R. The phosphatidylinositol transfer protein domain of Drosophila retinal degeneration B protein is essential for photoreceptor cell survival and recovery from light stimulation. J Cell Biol. 139, 351-363 (1997).
  31. Gordon, W. C., Casey, D. M., Lukiw, W. J., Bazan, N. G. DNA damage and repair in light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci. 43, 3511-3521 (2002).
  32. Blennow, K., et al. Traumatic brain injuries. Nat Rev Dis Primers. 2, 16084 (2016).
  33. Castellsague, X., et al. Influence of mate drinking, hot beverages and diet on esophageal cancer risk in South America. Int J Cancer. 88, 658-664 (2000).
  34. Islami, F., et al. Tea drinking habits and oesophageal cancer in a high risk area in northern Iran: population based case-control study. BMJ. 338, b929 (2009).
  35. Loomis, D., et al. Carcinogenicity of drinking coffee, mate, and very hot beverages. Lancet Oncol. 17, 877-878 (2016).
  36. Boffetta, P., Hashibe, M. Alcohol and cancer. Lancet Oncol. 7, 149-156 (2006).
  37. McKillop, I. H., Schrum, L. W. Alcohol and liver cancer. Alcohol. 35, 195-203 (2005).
  38. Davis, A. J., Tannock, J. F. Repopulation of tumour cells between cycles of chemotherapy: a neglected factor. Lancet Oncol. 1, 86-93 (2000).
  39. Demedts, I. K., Vermaelen, K. Y., van Meerbeeck, J. P. Treatment of extensive-stage small cell lung carcinoma: current status and future prospects. Eur Respir J. 35, 202-215 (2010).
  40. Wagle, N., et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 29, 3085-3096 (2011).
  41. Smith, R. E., et al. Acute myeloid leukemia and myelodysplastic syndrome after doxorubicin-cyclophosphamide adjuvant therapy for operable breast cancer: the National Surgical Adjuvant Breast and Bowel Project Experience. J Clin Oncol. 21, 1195-1204 (2003).
  42. Travis, L. B., et al. Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J Natl Cancer Inst. 97, 1354-1365 (2005).
  43. Chaturvedi, A. K., et al. Second cancers among 104,760 survivors of cervical cancer: evaluation of long-term risk. J Natl Cancer Inst. 99, 1634-1643 (2007).
  44. Moteabbed, M., Yock, T. I., Paganetti, H. The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. Phys Med Biol. 59, 2883-2899 (2014).
  45. Painter, R. C., et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 115, 1243-1249 (2008).
  46. Ding, A. X., et al. CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo. Elife. 5, (2016).
  47. Takemoto, K., et al. Local initiation of caspase activation in Drosophila salivary gland programmed cell death in vivo. Proc Natl Acad Sci U S A. 104, 13367-13372 (2007).
  48. Bardet, P. L., et al. A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci U S A. 105, 13901-13905 (2008).
  49. Nicholls, S. B., Chu, J., Abbruzzese, G., Tremblay, K. D., Hardy, J. A. Mechanism of a genetically encoded dark-to-bright reporter for caspase activity. J Biol Chem. 286, 24977-24986 (2011).
  50. Golbs, A., Nimmervoll, B., Sun, J. J., Sava, I. E., Luhmann, H. J. Control of programmed cell death by distinct electrical activity patterns. Cereb Cortex. 21, 1192-1202 (2011).
  51. Zhang, J., et al. Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nat Commun. 4, 2157 (2013).
  52. To, T. L., et al. Rationally designed fluorogenic protease reporter visualizes spatiotemporal dynamics of apoptosis in vivo. Proc Natl Acad Sci U S A. 112, 3338-3343 (2015).
  53. Evans, C. J., et al. G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods. 6, 603-605 (2009).
  54. Chyb, S., Gompel, N. . Atlas of Drosophila morphology : wild-type and classical mutants. xviii, 224 (2013).
  55. Drobnis, E. Z., et al. Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool. 265, 432-437 (1993).
  56. Quinn, P. J. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology. 22, 128-146 (1985).
  57. Drummond-Barbosa, D., Spradling, A. C. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol. 231, 265-278 (2001).
  58. Pritchett, T. L., Tanner, E. A., McCall, K. Cracking open cell death in the Drosophila ovary. Apoptosis. 14, 969-979 (2009).
  59. Jenkins, V. K., Timmons, A. K., McCall, K. Diversity of cell death pathways: insight from the fly ovary. Trends Cell Biol. 23, 567-574 (2013).
  60. McPhee, C. K., Baehrecke, E. H. Autophagy in Drosophila melanogaster. Biochim Biophys Acta. 1793, 1452-1460 (2009).
  61. Barth, J. M., Szabad, J., Hafen, E., Kohler, K. Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis. Cell Death Differ. 18, 915-924 (2011).
  62. Wong, L. C., Schedl, P. Dissection of Drosophila ovaries. J Vis Exp. (52), (2006).
  63. Sarkissian, T., Timmons, A., Arya, R., Abdelwahid, E., White, K. Detecting apoptosis in Drosophila tissues and cells. Methods. 68, 89-96 (2014).
  64. Tang, H. L., Tang, H. M., Fung, M. C., Hardwick, J. M. In Vivo Biosensor Tracks Non-apoptotic Caspase Activity in Drosophila. J Vis Exp. , (2016).
  65. Gossen, M., et al. Transcriptional activation by tetracyclines in mammalian cells. Science. 268, 1766-1769 (1995).
  66. Yamanashi, Y., et al. The yes-related cellular gene lyn encodes a possible tyrosine kinase similar to p56lck. Mol Cell Biol. 7, 237-243 (1987).
  67. Inoue, T., Heo, W. D., Grimley, J. S., Wandless, T. J., Meyer, T. An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat Methods. 2, 415-418 (2005).
  68. Fukuda, M., Gotoh, I., Gotoh, Y., Nishida, E. Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem. 271, 20024-20028 (1996).
  69. Feil, R., Wagner, J., Metzger, D., Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun. 237, 752-757 (1997).
  70. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., Earnshaw, W. C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 371, 346-347 (1994).
  71. Mansuy, I. M., et al. Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron. 21, 257-265 (1998).
  72. Bier, E. Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet. 6, 9-23 (2005).
  73. Gonzalez, C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer. 13, 172-183 (2013).
  74. Yamamoto, S., et al. A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell. 159, 200-214 (2014).
  75. Wangler, M. F., Hu, Y., Shulman, J. M. Drosophila and genome-wide association studies: a review and resource for the functional dissection of human complex traits. Dis Model Mech. 10, 77-88 (2017).
  76. Ditzel, M., et al. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nat Cell Biol. 5, 467-473 (2003).
  77. Li, X., Wang, J., Shi, Y. Structural mechanisms of DIAP1 auto-inhibition and DIAP1-mediated inhibition of drICE. Nat Commun. 2, 408 (2011).
  78. Yi, S. X., Moore, C. W., Lee, R. E. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis. 12, 1183-1193 (2007).
  79. Jonas, E. A., et al. Proapoptotic N-truncated BCL-xL protein activates endogenous mitochondrial channels in living synaptic terminals. Proc Natl Acad Sci U S A. 101, 13590-13595 (2004).
  80. Li, Z., et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell. 141, 859-871 (2010).
  81. Hyman, B. T., Yuan, J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci. 13, 395-406 (2012).
  82. Maor-Nof, M., Yaron, A. Neurite pruning and neuronal cell death: spatial regulation of shared destruction programs. Curr Opin Neurobiol. 23, 990-996 (2013).
  83. Yu, F., Schuldiner, O. Axon and dendrite pruning in Drosophila. Curr Opin Neurobiol. 27, 192-198 (2014).
  84. Neukomm, L. J., Freeman, M. R. Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol. 24, 515-523 (2014).
  85. Oberst, A., et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 471, 363-367 (2011).
  86. Kaiser, W. J., et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 471, 368-372 (2011).
  87. Arama, E., Agapite, J., Steller, H. Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell. 4, 687-697 (2003).
  88. Kaplan, Y., Gibbs-Bar, L., Kalifa, Y., Feinstein-Rotkopf, Y., Arama, E. Gradients of a ubiquitin E3 ligase inhibitor and a caspase inhibitor determine differentiation or death in spermatids. Dev Cell. 19, 160-173 (2010).
  89. Weaver, B. P., et al. CED-3 caspase acts with miRNAs to regulate non-apoptotic gene expression dynamics for robust development in C. elegans. Elife. 3, (2014).
  90. Fogarty, C. E., Bergmann, A. Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease. Cell Death Differ. 24, 1390-1400 (2017).
  91. Weaver, B. P., Weaver, Y. M., Mitani, S., Han, M. Coupled Caspase and N-End Rule Ligase Activities Allow Recognition and Degradation of Pluripotency Factor LIN-28 during Non-Apoptotic Development. Dev Cell. 41, 665-673 (2017).
  92. Baum, J. S., Arama, E., Steller, H., McCall, K. The Drosophila caspases Strica and Dronc function redundantly in programmed cell death during oogenesis. Cell Death Differ. 14, 1508-1517 (2007).
  93. Duffy, J. B. GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis. 34, 1-15 (2002).
  94. Fan, Y., Bergmann, A. The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila. Cell Death Differ. 17, 534-539 (2010).
  95. Codogno, P., Meijer, A. J. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12 Suppl 2, 1509-1518 (2005).
  96. Tsapras, P., Nezis, I. P. Caspase involvement in autophagy. Cell Death Differ. 24, 1369-1379 (2017).
  97. Dunai, Z. A., et al. Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PLoS One. 7, e41945 (2012).
  98. Simenc, J., Lipnik-Stangelj, M. Staurosporine induces different cell death forms in cultured rat astrocytes. Radiol Oncol. 46, 312-320 (2012).
  99. Sun, G., et al. A molecular signature for anastasis, recovery from the brink of apoptotic cell death. J Cell Biol. , (2017).
  100. Milting, H., et al. Altered levels of mRNA of apoptosis-mediating genes after mid-term mechanical ventricular support in dilative cardiomyopathy–first results of the Halle Assist Induced Recovery Study (HAIR). Thorac Cardiovasc Surg. 47, 48-50 (1999).
  101. Haider, N., et al. Concurrent upregulation of endogenous proapoptotic and antiapoptotic factors in failing human hearts. Nat Clin Pract Cardiovasc Med. 6, 250-261 (2009).
  102. Strik, H., et al. BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. J Neurol Neurosurg Psychiatry. 67, 763-768 (1999).
check_url/it/54107?article_type=t

Play Video

Citazione di questo articolo
Tang, H. M., Fung, M. C., Tang, H. L. Detecting Anastasis In Vivo by CaspaseTracker Biosensor. J. Vis. Exp. (132), e54107, doi:10.3791/54107 (2018).

View Video