Summary

Påvisning af Anastasis In Vivo af CaspaseTracker Biosensor

Published: February 01, 2018
doi:

Summary

Anastasis teknisk udfordrende for at opdage i vivo , fordi de celler, der har vendt den celle død proces kan være morfologisk umulig at skelne fra normale sunde celler. Her beskriver vi protokoller til påvisning og spore celler, der undergår anastasis i levende dyr ved hjælp af vores nyudviklede i vivo CaspaseTracker biosensor system.

Abstract

Anastasis (græsk for “stigende til liv”) er en nylig opdaget celle opsving fænomen hvor døende celler kan tilbageføre sene celle død processer, som generelt antages for at være uløseligt irreversibel. Fremme anastasis kunne i princippet redning eller Bevar sårede celler, der er svære at erstatte såsom cardiomyocytes eller neuroner, dermed at lette væv opsving. Omvendt, undertrykke anastasis i kræftceller, undergår apoptose efter anti-kræft behandlinger, kan sikre kræft celledød og mindske risikoen for tilbagefald. Men disse undersøgelser har været hæmmet af manglen på værktøjer til at spore skæbnen af celler, der undergår anastasis med levende dyr. Udfordringen er at identificere de celler, der har vendt celle dødsprocessen trods deres morfologisk normale udseende efter helbredelse. For at overvinde denne vanskelighed, har vi udviklet Drosophila og pattedyr CaspaseTracker biosensor systemer, der kan identificere og permanent spore anastatic celler in vitro eller i vivo. Vi præsenterer her, i vivo protokoller til produktion og brug af CaspaseTracker dual biosensor system til at registrere og spore anastasis i Drosophila melanogaster efter forbigående eksponering for celle død stimuli. Mens konventionelle biosensorer og protokoller kan mærke cellerne aktivt undergår apoptotisk celledød, CaspaseTracker biosensor permanent kan mærke celler, der har genvundet efter caspase aktivering – kendetegnende for sene apoptose, og samtidig identificere aktive apoptotiske processer. Denne biosensor kan også spore inddrivelse af de celler, der forsøgte andre former for celledød, der direkte eller indirekte involveret caspase aktivitet. Derfor, denne protokol giver os løbende spore disse celler og deres afkom, lette fremtidige studier af biologiske funktioner, molekylære mekanismer, fysiologiske og patologiske konsekvenser og terapeutiske virkninger af skæbne Anastasis. Vi diskuterer også de passende kontrol for at skelne mellem celler, der undergår anastasis fra dem, der viser ikke-apoptotiske caspase aktivitet in vivo.

Introduction

Programmeret celledød, såsom apoptose, spiller en væsentlig rolle i embryonale udvikling og normal homøostase ved at fjerne uønskede, tilskadekomne eller farlige celler i flercellede organismer1,2,3. Tab af balance mellem celledød og overlevelse kan føre til fatale konsekvenser som kræft, hjertesvigt, autoimmunitet og degeneration4,5,6,7,8. Aktivering af bøddel caspases har traditionelt været betragtet som “point of no return” i apoptose9,10,11, som det udløser hurtig og massiv cellulære nedrivning12, 13,14,15,16. Udfordrende denne generelle dogme, viste vi at kulturperler døende primære celler og kræftceller kan genoprette ikke kun efter caspase aktivering, men også følgende vigtige celle død kendetegnende herunder plasma membran blebbing, celle svind, mitokondrie fragmentering, frigivelse af mitokondrie cytokrom c i cytosol, nukleare og kromatin kondens, DNA-skader, nukleare fragmentering, celle overflade eksponering af Phosphatidylserin (PS), og dannelsen af apoptotiske organer 17 , 18 , 19 , 20 , 21. foreslår vi at anastasis er en iboende celle opsving fænomen, som døende celler kan genoprette efter fjernelse af celle død stimuli17,18,19,20, 21. Vi opfandt udtrykket “Anastasis” (Αναστάσης)18, hvilket betyder “stiger til livet” på græsk, at beskrive fænomenet uventede celle opsving. Vores observation af anastasis understøttes yderligere af de seneste uafhængige undersøgelser, der også afslører inddrivelse af celler efter phosphatidylserin udlægning22,23,24, begrænset mitokondrie ydre membran permeabilization25, aktivering af blandet lineage kinase-lignende (MLKL), og celle svind26.

Kendetegner de mekanismer, der regulerer anastasis vil have paradigme-shifting fysiologiske, patologiske og terapeutiske virkninger. Anastasis kunne repræsentere en hidtil ukendt cytoprotective mekanisme til at redde eller bevare vigtige postmitotic celler og væv, der er vanskelig at erstatte, og eventuelt konto for hjertesvigt tilbageførsel af ventrikulær losning med venstre ventrikel hjælpe enheder (LVADs)27,28, inddrivelse af fotoreceptor celler efter forbigående eksponering af overdreven lys29,30,31, eller reparation af neuroner efter hjernen skade32. Hvis så fremme anastasis kunne øge celle og væv opsving. Omvendt kunne anastasis være en uventet undslippe taktik bruges af kræftceller til at overleve celle-død-inducerende terapi, forårsager kræft tilbagefald17,18. Derfor, undertrykke anastasis døende kræftceller under og efter kræftbehandling kan være en roman terapeutisk strategi at helbrede kræft ved at forhindre deres tilbagefald.

Under processen med anastasis, har vi fundet at nogle gendannede celler erhvervet permanent genetiske ændringer og undergik muterede transformation, sandsynligvis på grund af DNA-skader opstået under apoptose18,20,21 . Vende dødsprocessen af DNA-beskadigede celler kunne være en mekanisme af tumordannelse, potentielt underliggende den observation, at gentagne vævsskade øger risikoen for kræft i en række forskellige væv, såsom kronisk termisk skade i spiserøret induceret ved indtagelse af meget varme drikke33,34,35, leverskader på grund af alkoholisme36,37, tumor udvikling efter genotoksiske kræft terapi38, 39,40, og udvikling af nye kræfttilfælde fra normale væv, der opstår under intervallerne mellem cyklusser af anti-cancer terapi41,42,43,44 . Hvis sand, kunne målretning anastasis forhindre eller anholde kræft udvikling og progression. Vi har fundet, at sult-induceret døende kønsceller gennemgå anastasis i re fodret Drosophila19.  Hvis anastasis forekommer i kimceller med DNA-skader, kunne det være konto for den iagttagelse, at langvarig miljømæssige stress fremmer udviklingen af genetiske sygdomme. For eksempel, bidrage hungersnød til udviklingen af transgenerationel arvelige sygdomme som diabetes og koronar hjertesygdomme45. Derfor kunne forståelse anastasis føre til strategier til forebyggelse af udvikling af arvelige sygdomme forårsaget af denne potentielle mekanisme.

For at udnytte opdagelsen af anastasis og direkte til at udvikle innovative behandlinger, er det vigtigt at undersøge årsag og konsekvens af anastasis med levende dyr. Men det er en teknisk udfordring at identificere og spore anastatic celler i vivo, fordi de celler, der inddrives fra celle dødsprocessen vises morfologisk umulig at skelne fra normale raske celler, og der er ingen biomarkør for anastasis identificeret endnu17,18,21. For at løse disse problemer, vi for nylig udviklet en ny i vivo caspase biosensor udpeget “CaspaseTracker”19, til at identificere og spore celler, der overlever apoptose efter caspase aktivering19,46, den Hallmark af apoptose10,14. Adskiller det fra “real-time” caspase biosensorer såsom SCAT12,47, Apoliner48, CA-normal god landbrugspraksis49, ApoAlert18,50, C3AIs51 og iCasper52 der registrerer løbende caspase aktivitet, CaspaseTracker biosensor desuden egenskaber evne hen til permanent mærke cellerne at udtrykke caspase aktivitet selv forbigående. Derfor muliggør CaspaseTracker biosensor lang sigt sporing af anastasis efter tilbageførsel af caspase-medieret celle død proces in vivo.

Protocol

1) forberedelse af CaspaseTracker Biosensor fluer Bedøver fluer med CO2, og brug en pensel til at overføre 7 til 10 caspase-følsomme Gal4 (DQVD)19 jomfruelige hunner og 7 til 10 G-Trace53 Gal4 reporter unge mandlige fluer (eller omvendt) i den samme hætteglas med flyve mad og frisk gær pasta.Bemærk: Tværs af Caspase-følsomme (DQVD) Gal4 og G-Trace fluer vil producere CaspaseTracker afkom fluer. Krydse af Caspase -if…

Representative Results

Mens time-lapse levende celle mikroskopi er en pålidelig metode til tarmkanalen anastasis i kulturperler celler20, er det udfordrende at identificere, hvilke celler har undergået anastasis i dyr, fordi de gendannede celler vises morfologisk skelnes fra normale sunde celler, der ikke har forsøgt celledød. For eksempel, vises menneskelige livmoderhalskræft HeLa celler morfologiske kendetegnende for apoptose1,2,<sup class="xre…

Discussion

CaspaseTracker dobbelt biosensor system er en roman og unikt værktøj, der tillader detektering af de seneste eller igangværende caspase aktivitet, og sporing af celler, der har vendt celledød og overleve efter at have oplevet caspase aktivitet i vivo. Mens caspase aktivitet er traditionelt blevet antaget som kendetegnende for apoptose, viser voksende undersøgelser, at ikke-apoptotiske caspase aktivitet spiller potentielle roller i forskellige normal cellefunktioner, såsom r…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Vi takker Darren Obbard for Drosophila billedet i figur 3 c og video manuskript; J. Marie Hardwick, Wade Gibson og Heather M. Lamb for værdifuld diskussion af dette manuskript. Dette arbejde blev støttet af en Sir Edward Youde Memorial Fellowship (H.L.T.), Dr. Walter Szeto Memorial Scholarship (H.L.T.), Fulbright give 007-2009 (H.L.T.), Life Science Research Foundation stipendium (H.L.T.), og NIC K22 give CA204458 (H.L.T.). Ho Lam Tang var en Mettes og Kay Curci Foundation Fellow af Life Sciences Research Foundation (2014-2017).

Materials

CONSUMABLES AND REAGENTS
Vectashield mounting medium Vector Products H-1000 Antifade mounting medium
Vectashield mounting medium (with DAPI) Vector Products H-1200 Antifade mounting medium with DAPI
Forceps Ted Pella #505 (110mm, #5) Dumont tweezer biology grade, stainless steel
Hanging Drop Slides Fisher Scientific 12-565B Glass slides
Hoechst 33342 Molecular Probes H1399 DNA stain
Mitotracker Red CMXRos  Molecular Probes M-7512 Mitochondria stain
Cleaved caspase-3 (Asp175) antibody Cell Signaling Technology #9661 Stain for active fragment of caspase-3
Bovine Serum Albumin (BAS) Sigma-Aldrich A8806 Blocking agent for immunostaining
Phosphate Buffered Saline  VWR 114-056-101 Medium for washing and immunostaining
Triton™ X-100 Sigma-Aldrich T8787 Detergent for cell permeabilization
Name Company Catalog Number Comments
EQUIPMENT
LSM780 confocal microscope Carl Zeiss N/A Imaging
Carl Zeiss Stereomicroscope Stemi 2000  Carl Zeiss N/A Drosophila dissection
AmScope Fiber Optic Dual Gooseneck Microscope Illuminator, 150W AmScope WBM99316  Light source

Riferimenti

  1. Kerr, J. F., Wyllie, A. H., Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26, 239-257 (1972).
  2. Jacobson, M. D., Weil, M., Raff, M. C. Programmed cell death in animal development. Cell. 88, 347-354 (1997).
  3. Fuchs, Y., Steller, H. Programmed cell death in animal development and disease. Cell. 147, 742-758 (2011).
  4. Hanahan, D., Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. 144, 646-674 (2011).
  5. Narula, J., et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 335, 1182-1189 (1996).
  6. Nagata, S. Apoptosis and autoimmune diseases. Ann N Y Acad Sci. 1209, 10-16 (2010).
  7. Mattson, M. P. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 1, 120-129 (2000).
  8. Hotchkiss, R. S., Strasser, A., McDunn, J. E., Swanson, P. E. Cell death. N Engl J Med. 361, 1570-1583 (2009).
  9. Green, D., Kroemer, G. The central executioners of apoptosis: caspases or mitochondria?. Trends Cell Biol. 8, 267-271 (1998).
  10. Riedl, S. J., Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 5, 897-907 (2004).
  11. Kroemer, G., et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3-11 (2009).
  12. Takemoto, K., Nagai, T., Miyawaki, A., Miura, M. Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol. 160, 235-243 (2003).
  13. Luthi, A. U., Martin, S. J. The CASBAH: a searchable database of caspase substrates. Cell Death Differ. 14, 641-650 (2007).
  14. Taylor, R. C., Cullen, S. P., Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 9, 231-241 (2008).
  15. Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J., Green, D. R. The BCL-2 family reunion. Mol Cell. 37, 299-310 (2010).
  16. Julien, O., Wells, J. A. Caspases and their substrates. Cell Death Differ. 24, 1380-1389 (2017).
  17. Tang, H. L., Yuen, K. L., Tang, H. M., Fung, M. C. Reversibility of apoptosis in cancer cells. Br J Cancer. 100, 118-122 (2009).
  18. Tang, H. L., et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol Biol Cell. 23, 2240-2252 (2012).
  19. Tang, H. L., Tang, H. M., Fung, M. C., Hardwick, J. M. In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity. Sci Rep. 5, 9015 (2015).
  20. Tang, H. L., Tang, H. M., Hardwick, J. M., Fung, M. C. Strategies for tracking anastasis, a cell survival phenomenon that reverses apoptosis. J Vis Exp. , (2015).
  21. Tang, H. M., Talbot, C. C., Fung, M. C., Tang, H. L. Molecular signature of anastasis for reversal of apoptosis. F1000Res. 6, 43 (2017).
  22. Hammill, A. K., Uhr, J. W., Scheuermann, R. H. Annexin V staining due to loss of membrane asymmetry can be reversible and precede commitment to apoptotic death. Exp Cell Res. , 16-21 (1999).
  23. Geske, F. J., Lieberman, R., Strange, R., Gerschenson, L. E. Early stages of p53-induced apoptosis are reversible. Cell Death Differ. 8, 182-191 (2001).
  24. Kenis, H., et al. Annexin A5 uptake in ischemic myocardium: demonstration of reversible phosphatidylserine externalization and feasibility of radionuclide imaging. J Nucl Med. 51, 259-267 (2010).
  25. Ichim, G., et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol Cell. 57, 860-872 (2015).
  26. Gong, Y. N., et al. ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences. Cell. 169, 286-300 (2017).
  27. Narula, J., Haider, N., Arbustini, E., Chandrashekhar, Y. Mechanisms of disease: apoptosis in heart failure–seeing hope in death. Nat Clin Pract Cardiovasc Med. 3, 681-688 (2006).
  28. Drakos, S. G., et al. Bridge to recovery: understanding the disconnect between clinical and biological outcomes. Circulation. 126, 230-241 (2012).
  29. McKechnie, N. M., Foulds, W. S. Recovery of the rabbit retina after light damage (preliminary observations). Albrecht Von Graefes Arch Klin Exp Ophthalmol. 212, 271-283 (1980).
  30. Milligan, S. C., Alb, J. G., Elagina, R. B., Bankaitis, V. A., Hyde, D. R. The phosphatidylinositol transfer protein domain of Drosophila retinal degeneration B protein is essential for photoreceptor cell survival and recovery from light stimulation. J Cell Biol. 139, 351-363 (1997).
  31. Gordon, W. C., Casey, D. M., Lukiw, W. J., Bazan, N. G. DNA damage and repair in light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci. 43, 3511-3521 (2002).
  32. Blennow, K., et al. Traumatic brain injuries. Nat Rev Dis Primers. 2, 16084 (2016).
  33. Castellsague, X., et al. Influence of mate drinking, hot beverages and diet on esophageal cancer risk in South America. Int J Cancer. 88, 658-664 (2000).
  34. Islami, F., et al. Tea drinking habits and oesophageal cancer in a high risk area in northern Iran: population based case-control study. BMJ. 338, b929 (2009).
  35. Loomis, D., et al. Carcinogenicity of drinking coffee, mate, and very hot beverages. Lancet Oncol. 17, 877-878 (2016).
  36. Boffetta, P., Hashibe, M. Alcohol and cancer. Lancet Oncol. 7, 149-156 (2006).
  37. McKillop, I. H., Schrum, L. W. Alcohol and liver cancer. Alcohol. 35, 195-203 (2005).
  38. Davis, A. J., Tannock, J. F. Repopulation of tumour cells between cycles of chemotherapy: a neglected factor. Lancet Oncol. 1, 86-93 (2000).
  39. Demedts, I. K., Vermaelen, K. Y., van Meerbeeck, J. P. Treatment of extensive-stage small cell lung carcinoma: current status and future prospects. Eur Respir J. 35, 202-215 (2010).
  40. Wagle, N., et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 29, 3085-3096 (2011).
  41. Smith, R. E., et al. Acute myeloid leukemia and myelodysplastic syndrome after doxorubicin-cyclophosphamide adjuvant therapy for operable breast cancer: the National Surgical Adjuvant Breast and Bowel Project Experience. J Clin Oncol. 21, 1195-1204 (2003).
  42. Travis, L. B., et al. Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J Natl Cancer Inst. 97, 1354-1365 (2005).
  43. Chaturvedi, A. K., et al. Second cancers among 104,760 survivors of cervical cancer: evaluation of long-term risk. J Natl Cancer Inst. 99, 1634-1643 (2007).
  44. Moteabbed, M., Yock, T. I., Paganetti, H. The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. Phys Med Biol. 59, 2883-2899 (2014).
  45. Painter, R. C., et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 115, 1243-1249 (2008).
  46. Ding, A. X., et al. CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo. Elife. 5, (2016).
  47. Takemoto, K., et al. Local initiation of caspase activation in Drosophila salivary gland programmed cell death in vivo. Proc Natl Acad Sci U S A. 104, 13367-13372 (2007).
  48. Bardet, P. L., et al. A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci U S A. 105, 13901-13905 (2008).
  49. Nicholls, S. B., Chu, J., Abbruzzese, G., Tremblay, K. D., Hardy, J. A. Mechanism of a genetically encoded dark-to-bright reporter for caspase activity. J Biol Chem. 286, 24977-24986 (2011).
  50. Golbs, A., Nimmervoll, B., Sun, J. J., Sava, I. E., Luhmann, H. J. Control of programmed cell death by distinct electrical activity patterns. Cereb Cortex. 21, 1192-1202 (2011).
  51. Zhang, J., et al. Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nat Commun. 4, 2157 (2013).
  52. To, T. L., et al. Rationally designed fluorogenic protease reporter visualizes spatiotemporal dynamics of apoptosis in vivo. Proc Natl Acad Sci U S A. 112, 3338-3343 (2015).
  53. Evans, C. J., et al. G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods. 6, 603-605 (2009).
  54. Chyb, S., Gompel, N. . Atlas of Drosophila morphology : wild-type and classical mutants. xviii, 224 (2013).
  55. Drobnis, E. Z., et al. Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool. 265, 432-437 (1993).
  56. Quinn, P. J. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology. 22, 128-146 (1985).
  57. Drummond-Barbosa, D., Spradling, A. C. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol. 231, 265-278 (2001).
  58. Pritchett, T. L., Tanner, E. A., McCall, K. Cracking open cell death in the Drosophila ovary. Apoptosis. 14, 969-979 (2009).
  59. Jenkins, V. K., Timmons, A. K., McCall, K. Diversity of cell death pathways: insight from the fly ovary. Trends Cell Biol. 23, 567-574 (2013).
  60. McPhee, C. K., Baehrecke, E. H. Autophagy in Drosophila melanogaster. Biochim Biophys Acta. 1793, 1452-1460 (2009).
  61. Barth, J. M., Szabad, J., Hafen, E., Kohler, K. Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis. Cell Death Differ. 18, 915-924 (2011).
  62. Wong, L. C., Schedl, P. Dissection of Drosophila ovaries. J Vis Exp. (52), (2006).
  63. Sarkissian, T., Timmons, A., Arya, R., Abdelwahid, E., White, K. Detecting apoptosis in Drosophila tissues and cells. Methods. 68, 89-96 (2014).
  64. Tang, H. L., Tang, H. M., Fung, M. C., Hardwick, J. M. In Vivo Biosensor Tracks Non-apoptotic Caspase Activity in Drosophila. J Vis Exp. , (2016).
  65. Gossen, M., et al. Transcriptional activation by tetracyclines in mammalian cells. Science. 268, 1766-1769 (1995).
  66. Yamanashi, Y., et al. The yes-related cellular gene lyn encodes a possible tyrosine kinase similar to p56lck. Mol Cell Biol. 7, 237-243 (1987).
  67. Inoue, T., Heo, W. D., Grimley, J. S., Wandless, T. J., Meyer, T. An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat Methods. 2, 415-418 (2005).
  68. Fukuda, M., Gotoh, I., Gotoh, Y., Nishida, E. Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem. 271, 20024-20028 (1996).
  69. Feil, R., Wagner, J., Metzger, D., Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun. 237, 752-757 (1997).
  70. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., Earnshaw, W. C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 371, 346-347 (1994).
  71. Mansuy, I. M., et al. Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron. 21, 257-265 (1998).
  72. Bier, E. Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet. 6, 9-23 (2005).
  73. Gonzalez, C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer. 13, 172-183 (2013).
  74. Yamamoto, S., et al. A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell. 159, 200-214 (2014).
  75. Wangler, M. F., Hu, Y., Shulman, J. M. Drosophila and genome-wide association studies: a review and resource for the functional dissection of human complex traits. Dis Model Mech. 10, 77-88 (2017).
  76. Ditzel, M., et al. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nat Cell Biol. 5, 467-473 (2003).
  77. Li, X., Wang, J., Shi, Y. Structural mechanisms of DIAP1 auto-inhibition and DIAP1-mediated inhibition of drICE. Nat Commun. 2, 408 (2011).
  78. Yi, S. X., Moore, C. W., Lee, R. E. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis. 12, 1183-1193 (2007).
  79. Jonas, E. A., et al. Proapoptotic N-truncated BCL-xL protein activates endogenous mitochondrial channels in living synaptic terminals. Proc Natl Acad Sci U S A. 101, 13590-13595 (2004).
  80. Li, Z., et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell. 141, 859-871 (2010).
  81. Hyman, B. T., Yuan, J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci. 13, 395-406 (2012).
  82. Maor-Nof, M., Yaron, A. Neurite pruning and neuronal cell death: spatial regulation of shared destruction programs. Curr Opin Neurobiol. 23, 990-996 (2013).
  83. Yu, F., Schuldiner, O. Axon and dendrite pruning in Drosophila. Curr Opin Neurobiol. 27, 192-198 (2014).
  84. Neukomm, L. J., Freeman, M. R. Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol. 24, 515-523 (2014).
  85. Oberst, A., et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 471, 363-367 (2011).
  86. Kaiser, W. J., et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 471, 368-372 (2011).
  87. Arama, E., Agapite, J., Steller, H. Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell. 4, 687-697 (2003).
  88. Kaplan, Y., Gibbs-Bar, L., Kalifa, Y., Feinstein-Rotkopf, Y., Arama, E. Gradients of a ubiquitin E3 ligase inhibitor and a caspase inhibitor determine differentiation or death in spermatids. Dev Cell. 19, 160-173 (2010).
  89. Weaver, B. P., et al. CED-3 caspase acts with miRNAs to regulate non-apoptotic gene expression dynamics for robust development in C. elegans. Elife. 3, (2014).
  90. Fogarty, C. E., Bergmann, A. Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease. Cell Death Differ. 24, 1390-1400 (2017).
  91. Weaver, B. P., Weaver, Y. M., Mitani, S., Han, M. Coupled Caspase and N-End Rule Ligase Activities Allow Recognition and Degradation of Pluripotency Factor LIN-28 during Non-Apoptotic Development. Dev Cell. 41, 665-673 (2017).
  92. Baum, J. S., Arama, E., Steller, H., McCall, K. The Drosophila caspases Strica and Dronc function redundantly in programmed cell death during oogenesis. Cell Death Differ. 14, 1508-1517 (2007).
  93. Duffy, J. B. GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis. 34, 1-15 (2002).
  94. Fan, Y., Bergmann, A. The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila. Cell Death Differ. 17, 534-539 (2010).
  95. Codogno, P., Meijer, A. J. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12 Suppl 2, 1509-1518 (2005).
  96. Tsapras, P., Nezis, I. P. Caspase involvement in autophagy. Cell Death Differ. 24, 1369-1379 (2017).
  97. Dunai, Z. A., et al. Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PLoS One. 7, e41945 (2012).
  98. Simenc, J., Lipnik-Stangelj, M. Staurosporine induces different cell death forms in cultured rat astrocytes. Radiol Oncol. 46, 312-320 (2012).
  99. Sun, G., et al. A molecular signature for anastasis, recovery from the brink of apoptotic cell death. J Cell Biol. , (2017).
  100. Milting, H., et al. Altered levels of mRNA of apoptosis-mediating genes after mid-term mechanical ventricular support in dilative cardiomyopathy–first results of the Halle Assist Induced Recovery Study (HAIR). Thorac Cardiovasc Surg. 47, 48-50 (1999).
  101. Haider, N., et al. Concurrent upregulation of endogenous proapoptotic and antiapoptotic factors in failing human hearts. Nat Clin Pract Cardiovasc Med. 6, 250-261 (2009).
  102. Strik, H., et al. BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. J Neurol Neurosurg Psychiatry. 67, 763-768 (1999).

Play Video

Citazione di questo articolo
Tang, H. M., Fung, M. C., Tang, H. L. Detecting Anastasis In Vivo by CaspaseTracker Biosensor. J. Vis. Exp. (132), e54107, doi:10.3791/54107 (2018).

View Video