Summary

Høy fett Fôring Paradigm for Larve Sebrafisk: Fôring, Live Imaging, og Kvantifisering av matinntak

Published: October 27, 2016
doi:

Summary

Zebrafish are emerging as a valuable model of dietary lipid processing and metabolic disease. Described are protocols of lipid-rich larval feeds, live imaging of dietary fluorescent lipid analogs, and quantification of food intake. These techniques can be applied to a variety of screening, imaging, and hypothesis driven inquiry techniques.

Abstract

Zebrafish are emerging as a model of dietary lipid processing and metabolic disease. This protocol describes how to feed larval zebrafish a lipid-rich meal, which consists of an emulsion of chicken egg yolk liposomes created by sonicating egg yolk in embryo media. Detailed instructions are provided to screen larvae for egg yolk consumption so that larvae that fail to feed will not confound experimental results. The chicken egg yolk liposomes can be spiked with fluorescent lipid analogs, including fatty acids and cholesterol, enabling both systemic and subcellular visualization of dietary lipid processing. Several methods are described to mount larvae that are conducive to short- and long-term live imaging with both upright and inverted objectives at high and low magnification. Additionally presented is an assay to quantify larval food intake by extracting the lipids of larvae fed fluorescent lipid analogs, spotting the lipids on a thin layer chromatography plate, and quantifying the fluorescence. Finally, critical aspects of the procedures, important controls, options for modifying the protocols to address specific experimental questions, and potential limitations are discussed. These techniques can be applied not only to focused, hypothesis driven inquiries, but also to a variety of screens and live imaging techniques to study dietary lipid metabolism and the control of food intake.

Introduction

De mekanismer som regulerer tarmen kost lipid behandling, styrer leveren komplekse lipid syntese og lipoproteinmetabolismen, og hvordan disse organene arbeider med sentralnervesystemet for å kontrollere matinntak er ufullstendig forstått. Det er av biomedisinsk interesse å belyse dette biologi i lys av dagens epidemier av fedme, hjerte- og karsykdommer, diabetes og alkoholfrie fatty leversykdom. Studier i cellekultur og mus har gitt mesteparten av vår forståelse av de mekanistiske relasjoner mellom lipider og sykdom, og sebrafisk (Danio rerio) er fremstår som en ideell modell for å utfylle dette arbeidet.

Sebrafisk har lignende gastrointestinal (GI) organer, lipidmetabolismen, og lipoprotein transport til høyere virveldyr 1,2, utvikle seg raskt, og er genetisk medgjørlig. Den optiske klarhet i larvesebrafisk letter in vivo studier, en particular fordel for studier av GI-systemet som sin ekstracellulære miljø (dvs. galle, microbiota, endokrine signalering) er nesten umulig å modellere ex vivo. I samsvar, en mengde forskning kombinere genetiske tractability og conduciveness å leve avbildning av sebrafisk larver med en rekke kosttilskudd manipulasjoner (fettrik 3,4, -kolesterol 5 og -karbohydrat dietter 6,7), og modeller av hjerte-og karsykdommer 8, diabetes 9,10, leversteatose 11-13, og fedme 14-16, dukker opp for å gi en rekke metabolske innsikt.

En viktig del av overgangen larvesebrafisk til metabolsk forskning er optimalisering av teknikker utviklet i modell for andre dyr til sebrafisk og utvikling av nye analyser som utnytter de unike styrkene til sebrafisk. Denne protokollen presenterer teknikker utviklet og optimalisert for å mate larvesebrafisk en Lipid rikt måltid, visualisere kosten lipid behandling fra hele kroppen til subcellulære oppløsning, og måle matinntaket. Kylling eggeplomme ble valgt for å komponere lipidrike måltid som den inneholder høye nivåer av fett og kolesterol (lipider komponere ~ 58% av kylling eggeplomme, hvorav ~ 5% cholesterol, 60% er triglycerider, og 35% er fosfolipider ). Kylling egg gir mer fett enn typiske kommersielle sebrafisk micropellet matvarer (~ 15% lipider) og den fordelen at det er en standardisert feed med kjente prosenter av spesifikke fettsyrer arter, som sebrafisk dietter og fôring regiments ikke har blitt standardisert på tvers av laboratorier 17. Videre fluorescerende lipid analogs anordnet i eggeplommen visualisere transport og akkumulering av lipider 18, bilde cellulære komponenter omfattende lipid-dråper ved å virke både som vitale fargestoffer 3 og gjennom kovalent inkorporering i komplekse lipider, undersøke metabolismen ved tynnsjiktskromatografi (TLC) 19 </sup> Og høy ytelse væskekromatografi (HPLC) (SAF upubliserte data), og tilveiebringe en kvantitativ analyse for total matinntaket 20.

Protocol

Disse protokollene har blitt godkjent av Carnegie Institution for Science Institutional Animal Care og bruk Committee (protokoll nr. 139). 1. Animal Forberedelse Opprettholde voksne og larver ved 28 ° C på en 14 timer: 10 timer lys: mørke syklus. Mate voksne to ganger daglig med skall gratis Artemia (Decapsulated, ikke-klekking, starter på 14 dpf) og kommersielle micro. Disse protokollene er optimalisert for bruken av 6-7 dpf larver oppsamlet ved naturlig gyting av AB bakgrunn. …

Representative Results

Når fôres på en rocker ved 29-31 ° C, vil flertallet av sunne larver (≥95%) spise innen en time. Ved inntak av eggeplommen emulsjon, mørkner larvetarmen i fargen. Svært mørke tarmen kan observeres ved 2 timer (figur 1). Dersom larvene er unfed eller unnlater å mate, forblir tarmen klart. Larver matet eggehvite utstillings et utvidet intestinal lumen som ikke mørkere i fargen. <img alt="Figur 1" src="/files/ftp_upload/54735/54735fig1…

Discussion

Teknikkene som beskrives her tillate forskere å behandle larvesebrafisk med en lipid-rik feed, visualisere kosten lipid behandling i levende larver, og kvantifisere larve matinntak. For å sikre suksess, bør spesiell oppmerksomhet gis til flere kritiske trinn. Kommersielle kylling egg variere; for å minimere potensielle variasjonen vi utføre alle analyser på økologiske egg fra bur-free kyllinger som ikke har blitt beriket for omega-3 fettsyrer. Lavere fôring prisene kan observeres i fisk yngre enn 6 dpf med gjenv…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank Meng-Chieh Shen for images, Jennifer Anderson for providing helpful comments on the manuscript, and members of the Farber laboratory for their contributions in developing these techniques. This study was funded by NIDDK-NIH award RO1DK093399 (S.A.F.), RO1GM63904 (The Zebrafish Functional Genomics Consortium: PI Stephen Ekker and Co-PI S.A.F), and F32DK096786 (J.P.O.). This content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. Additional support was provided by the G. Harold and Leila Y. Mathers Charitable Foundation to the laboratory of S.A.F and the Carnegie Institution for Science endowment.

Materials

Tricaine (ethyl 3-aminobenzoate methanesulofnate salt) Sigma-Aldrich A5040-25G Anesthesia for larval zebrafish
Chicken eggs N/A N/A Organic, cage-free eggs, not enriched for omege-3 fatty acids
Ultrasonic processor 3000 sonicator Misonix, Inc. S-3000 To make egg yolk liposomes
Sonabox acoustic enclosure Misonix, Inc. 432B To make egg yolk liposomes
1/8” tapered microtip Misonix, Inc. 419 To make egg yolk liposomes
Amber vials (4 ml, glass) National Scientific 13-425 Lipid storage; includes vials, open-top caps, and cap septa
Incu-Shaker Mini  Benchmark 1222U12 Incubated shaker for feeds
BODIPY FL C16  Thermo Fisher Scientific D3821 Fluorescent lipid analog; (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Hexadecanoic Acid)
BODIPY FL C12  Thermo Fisher Scientific D3822 Fluorescent lipid analog; (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Dodecanoic Acid)
BODIPY FL C5  Thermo Fisher Scientific D3834 Fluorescent lipid analog; (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Pentanoic Acid)
BODIPY FL C5 Thermo Fisher Scientific D2183 Fluorescent lipid analog; (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Propionic Acid)
TopFluor cholesterol  Avanti Polar Lipids Inc. 810255 Fluorescent lipid analog; 23-(dipyrrometheneboron difluoride)-24-norcholesterol
Fatty acid-free BSA Sigma-Aldrich A0281-1G For TopFluor cholesterol solubilization
Methyl cellulose Sigma-Aldrich M0387 Mounting media for live larval imaging; 75 x 25 x 1 mm
Low melt agarose Thermo Fisher Scientific BP165-25 Mounting media for live larval imaging; 22 x 30
VWR microscope slides  VWR  16004-422 Mounting larvae for live imaging
Coverslips  Cover Glass 12-544A Mounting larvae for live imaging
Super glue Loctite LOC01-30379 Mounting larvae for live imaging
FluoroDish (glass bottom dish) World Precision Instruments, Inc.  FD35-100 Mounting larvae for live imaging; 35 mm dish, 23 mm glass, 0.17 mm glass thickness  
Confocal microscope Leica Microsytems SP-2, SP-5 Microscope for high magnification live imaging
Stereoscope Nikon SM21500 Microscope for low magnification live imaging
Glass culture tubes  Kimble 73500-13100 Lipid extraction; (13 x 100 mm; 13 ml)
Savant SpeedVac Plus  ThermoQuest SC210A Lipid extraction
Channeled TLC plates Whatman Scientific WC4855-821 Food intake assay; LK5D Silica Gel 150 A, 20 x 20 cm, 250 um thick; Discontinued
Channeled TLC plates Analtech, Inc. 66911 Food intake assay; Direct replacement for Whatman Scientific TLC plates
Typhoon 9410 Variable Mode Imager GE Healthcare 9410 Fluorescent plate reader for food intake assay
ImageQuant software GE Healthcare 29000605 Analysis of food intake assay
5 3/4’ Wide bore, borosilicate disposable pasteur pipets    Kimble 63A53WT Transfering larvae

References

  1. Carten, J. D., Farber, S. A. A new model system swims into focus: using the zebrafish to visualize intestinal metabolism in vivo. Clin Lipidol. 4 (4), 501 (2009).
  2. Babin, P. J., Vernier, J. M. Plasma lipoproteins in fish. J Lipid Res. 30 (4), 467-489 (1989).
  3. Carten, J. D., Bradford, M. K., Farber, S. A. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish. Dev Biol. 360 (2), 276-285 (2011).
  4. Marza, E., et al. Developmental expression and nutritional regulation of a zebrafish gene homologous to mammalian microsomal triglyceride transfer protein large subunit. Dev Dyn. 232 (2), 506-518 (2005).
  5. Stoletov, K., et al. Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circ Res. 104 (8), 952-960 (2009).
  6. Fang, L., et al. Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio. Br J Nutr. 111 (5), 808-818 (2014).
  7. Wang, Z., Mao, Y., Cui, T., Tang, D., Wang, X. L. Impact of a combined high cholesterol diet and high glucose environment on vasculature. PLoS One. 8 (12), 81485 (2013).
  8. Fang, L., et al. In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish. J Clin Invest. 121 (12), 4861-4869 (2011).
  9. Curado, S., et al. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn. 236 (4), 1025-1035 (2007).
  10. Pisharath, H., Rhee, J. M., Swanson, M. A., Leach, S. D., Parsons, M. J. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev. 124 (3), 218-229 (2007).
  11. Passeri, M. J., Cinaroglu, A., Gao, C., Sadler, K. C. Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology. 49 (2), 443-452 (2009).
  12. Sadler, K. C., Amsterdam, A., Soroka, C., Boyer, J., Hopkins, N. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development. 132 (15), 3561-3572 (2005).
  13. Matthews, R. P., et al. TNFalpha-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S-adenosylhomocysteine hydrolase. Development. 136 (5), 865-875 (2009).
  14. Oka, T., et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 10, 21 (2010).
  15. Chu, C. Y., et al. Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One. 7 (5), 36474 (2012).
  16. Song, Y., Cone, R. D. Creation of a genetic model of obesity in a teleost. FASEB J. 21 (9), 2042-2049 (2007).
  17. Watts, S. A., Powell, M., D’Abramo, L. R. Fundamental approaches to the study of zebrafish nutrition. ILAR J. 53 (2), 144-160 (2012).
  18. Farber, S. A., et al. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science. 292 (5520), 1385-1388 (2001).
  19. Miyares, R. L., de Rezende, V. B., Farber, S. A. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism. Dis Model Mech. 7 (7), 915-927 (2014).
  20. Otis, J. P., et al. Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech. 8 (3), 295-309 (2015).
  21. Bligh, E., Dyer, W. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-918 (1959).
  22. Otis, J. P., Farber, S. A. Imaging vertebrate digestive function and lipid metabolism. Drug Discov Today Dis Models. 10 (1), (2013).
  23. Andre, M., et al. Intestinal fatty acid binding protein gene expression reveals the cephalocaudal patterning during zebrafish gut morphogenesis. Int J Dev Biol. 44 (2), 249-252 (2000).
  24. Shimada, Y., Hirano, M., Nishimura, Y., Tanaka, T. A high-throughput fluorescence-based assay system for appetite-regulating gene and drug screening. PLoS One. 7 (12), 52549 (2012).
check_url/54735?article_type=t

Play Video

Cite This Article
Otis, J. P., Farber, S. A. High-fat Feeding Paradigm for Larval Zebrafish: Feeding, Live Imaging, and Quantification of Food Intake. J. Vis. Exp. (116), e54735, doi:10.3791/54735 (2016).

View Video