Summary

Preparation and In Vitro Characterization of Dendrimer-based Contrast Agents for Magnetic Resonance Imaging

Published: December 04, 2016
doi:

Summary

This protocol describes the preparation and characterization of a dendrimeric magnetic resonance imaging (MRI) contrast agent that carries cyclen-based macrocyclic chelates coordinating paramagnetic gadolinium ions. In a series of MRI experiments in vitro, this agent produced an amplified MRI signal when compared to the commercially available monomeric analogue.

Abstract

Paramagnetic complexes of gadolinium(III) with acyclic or macrocyclic chelates are the most commonly used contrast agents (CAs) for magnetic resonance imaging (MRI). Their purpose is to enhance the relaxation rate of water protons in tissue, thus increasing the MR image contrast and the specificity of the MRI measurements. Current clinically approved contrast agents are low molecular weight molecules that are rapidly cleared from the body. The use of dendrimers as carriers of paramagnetic chelators can play an important role in the future development of more efficient MRI contrast agents. Specifically, the increase in local concentration of the paramagnetic species results in a higher signal contrast. Furthermore, this CA provides a longer tissue retention time due to its high molecular weight and size. Here, we demonstrate a convenient procedure for the preparation of macromolecular MRI contrast agents based on poly(amidoamine) (PAMAM) dendrimers with monomacrocyclic DOTA-type chelators (DOTA – 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate). The chelating unit was appended by exploiting the reactivity of the isothiocyanate (NCS) group towards the amine surface groups of the PAMAM dendrimer to form thiourea bridges. Dendrimeric products were purified and analyzed by means of nuclear magnetic resonance spectroscopy, mass spectrometry, and elemental analysis. Finally, high resolution MR images were recorded and the signal contrasts obtained from the prepared dendrimeric and the commercially available monomeric agents were compared.

Introduction

Magnetic resonance imaging (MRI) is a powerful and non-ionizing imaging technique widely used in biomedical research and clinical diagnostics due to its noninvasive nature and excellent intrinsic soft-tissue contrast. The most commonly used MRI methods utilize the signal obtained from water protons, providing high-resolution images and detailed information within the tissues based on differences in the density of the water signals. The signal intensity and the specificity of the MRI experiments can be further improved using contrast agents (CAs). These are paramagnetic or superparamagnetic species that affect the longitudinal (T1) and transverse (T2) relaxation times, respectively1,2.

Complexes of the lanthanide ion gadolinium with polyamino polycarboxylic acid ligands are the most commonly used T1 CAs. Gadolinium(III) shortens the T1 relaxation time of water protons, thus increasing the signal contrast in MRI experiments3. However, ionic gadolinium is toxic; its size approximates that of calcium(II), and it seriously affects calcium-assisted signaling in cells. Therefore, acyclic and macrocyclic chelates are employed to neutralize this toxicity. Various multidentate ligands have been developed so far, resulting in gadolinium(III) complexes with high thermodynamic stability and kinetic inertness1. Those based on the 12-membered azamacrocycle cyclen, in particular its tetracarboxylic derivative DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) are the most investigated and applied complexes of this CA class.

Nevertheless, GdDOTA-type CAs are low molecular weight systems, displaying certain disadvantages such as low contrast efficiency and fast renal excretion. Macromolecular and multivalent CAs may be a good solution to these problems4. Since CA biodistribution is mainly determined by their size, macromolecular CAs display much longer retention times within tissues. Equally important, the multivalency of these agents results in an increased local concentration of the monomeric MR probe (e.g., GdDOTA complex), substantially improving the acquired MR signal and the measurement quality.

Dendrimers are amongst the most preferred scaffolds for the preparation of multivalent CAs for MRI4,5. These highly branched macromolecules with well-defined sizes are prone to various coupling reactions on their surface. In this work, we report the preparation, purification, and characterization of a dendrimeric CA for MRI consisting of a generation 4 (G4) poly(amidoamine) (PAMAM) dendrimer coupled to GdDOTA-like chelates (DCA). We describe the synthesis of the reactive DOTA derivative and its coupling to the PAMAM dendrimer. Upon complexation with Gd(III), the standard physicochemical characterization procedure of DCA was performed. Finally, MRI experiments were performed to demonstrate the ability of DCA to produce MR images with a stronger contrast than those obtained from low molecular weight CAs.

Protocol

1. Preparation of DCA Synthesis of the monomeric unit 46. Synthesis of 4-(4-nitrophenyl)-2-(4,7,10-tris-tert-butoxycarbonylmethyl-1,4,7,10-tetraazacyclododec-1-yl)butyric acid tert-butyl ester (2). Dissolve (4,7-bis-tert-butoxycarbonylmethyl-1,4,7,10-tetraaza-cyclododec-1-yl)-acetic acid tert-butyl ester 1 (1.00 g, 1.94 mmol) in N,N-dimethylformamide (DM…

Representative Results

The preparation of DCA consisted of two stages: 1) synthesis of the monomeric DOTA-type chelator (Figure 1) and 2) coupling of the chelator with the G4 PAMAM dendrimer and subsequent preparation of the dendrimeric Gd(III) complex (Figure 2). In the first stage, a cyclen-based DOTA-type chelator containing four carboxylic acids and an orthogonal group suitable for further synthetic modifications was prepared. The preparation commenced from…

Discussion

Preparation of the dendrimeric MRI contrast agent requires appropriate selection of the monomeric unit (i.e., the chelator for Gd(III)). They reduce the toxicity of this paramagnetic ion and, to date, a wide variety of acyclic and macrocyclic chelators serve this purpose1-3. Among these, macrocyclic DOTA-type chelators possess the highest thermodynamic stability and kinetic inertness and, hence, are the most preferred choice for the preparation of inert MRI contrast agents1,18. Furthermore,…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The financial support of the Max-Planck Society, the Turkish Ministry of National Education (PhD fellowship to S. G.), and the German Exchange Academic Service (DAAD, PhD fellowship to T. S.) are gratefully acknowledged.

Materials

Cyclen CheMatech C002
tert-Butyl bromoacetate  Alfa Aesar A14917
N,N-Dimethylformamide Fluka 40248
Potassium carbonate Sigma-Aldrich 209619
4-(4-Nitrophenyl)butryic acid Aldrich 335339
Thionyl chloride  Acros Organics 382662500 Note: Corrosive substance; toxic if inhaled
Bromine Acros Organics 402841000 Note: causes severe skin burns, fatal if inhaled 
Diethyl ether any source
Sodium sulphate Acros Organics 196640010
Chloroform  VWR Chemicals 22711.29
tert-Butyl 2,2,2-trichloroacetimidate Aldrich 364789 Note: flammable substance; irritrant to skin and eyes
Boron trifluoride etherate Acros Organics 174560250 48 % BF3. Note: Flammable substance; causes skin burns, fatal if inhaled 
Sodium bicarbonate Acros Organics 424270010
Ethyl-acetate any source For column chromatography
n-Hexane any source For column chromatography
Bulb-to-bulb (Kugelrohr) distillation apparatus Büchi Model type: Glass oven B-585
Silicagel Carl Roth GmbH P090.2
Methanol any source For column chromatography
Dichloromethane  any source For column chromatography
Ethanol VWR Chemicals 20821.296
Ammonia Acros Organics 428381000 7N Solution in Methanol
Palladium  Aldrich 643181 15 % wet
Hydrogenation apparatus PARR PARR Instrument Company
Celite 503 Aldrich 22151
Sintered glass funnel any source
Thiophosgen Aldrich 115150 Note: irritrant to skin; toxic if inhaled
Triethylamine Alfa Aesar A12646
Dichloromethane  Acros Organics 348460010 Extra dry 
Magnetic stirrer any source
PAMAM G4 Dendrimer Andrews ChemService AuCS – 297  10 % wt. solution in MeOH
Lipophylic Sephadex LH-20 Sigma LH20100
Thin-layer chromatography plates Merck Millipore 1.05554.0001
Formic acid VWR Chemicals 20318.297
Lophylizer  any source
Gadollinium(III) chloride hexahydrate Aldrich G7532
Sodium hydroxide Acros Organics 134070010
pH meter any source
Ethylenediaminetetraacetic acid disodium salt dihydrate Aldrich E5134
Mass spectrometer (ESI) Agilent Ion trap SL 1100 
Acetate buffer any source pH 5.8
Xylenol orange Aldrich 52097 20 μM in acetate buffer
Hydrophylic Sephadex G-15 GE Healthcare 17-0020-01
Amicon Ultra-15 Centrifugal Filter Unit Merck Millipore UFC900324 Ultracel-3 membrane (MWCO 3000)
Centrifuge any source
NMR spectrometer  Bruker Avance III 300 MHz
Topspin Bruker version 2.1
Combustion analysis instrument EuroVector SpA EuroEA 3000 Elemental Analyser 
MALDI-ToF MS instrument Applied Biosystems Voyager-STR
Deuteriumoxid Carl Roth GmbH 6672.3
tert-Butyl alcohol Carl Roth GmbH AE16.1
Vortex mixer any source
Norell NMR tubes Deutero GmbH 507-HP-7
NMR coaxial tube Deutero GmbH coaxialb-5-7
DLS instrument Malvern Zetasizer Nano ZS
0.20 μm PTFE filter  Carl Roth GmbH KC94.1
HEPES Fisher BioReagents BP310
Plastic tube vials any source
Dotarem Guerbet NDC 67684-2000-1
MRI scanner Bruker BioSpec 70/30 USR magnet (7 T). Note: potential hazards related to high magnetic fields
RF coil Bruker dual frequency volume coil (RF RES 300 1H/19F 075/040 LIN/LIN TR)
Paravision (software) Bruker Version 5.1

Riferimenti

  1. Merbach, A. E., Helm, L., Tóth, &. #. 2. 0. 1. ;. . The chemistry of contrast agents in medical magnetic resonance imaging. 2nd ed. , (2013).
  2. Geraldes, C. F. G. C., Laurent, S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol. Imaging. 4 (1), 1-23 (2009).
  3. Caravan, P., Ellison, J. J., McMurry, T. J., Lauffer, R. B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 99 (9), 2293-2352 (1999).
  4. Villaraza, A. J. L., Bumb, A., Brechbiel, M. W. Macromolecules, Dendrimers, and Nanomaterials in Magnetic Resonance Imaging: The Interplay between Size, Function, and Pharmacokinetics. Chem. Rev. 110 (5), 2921-2959 (2010).
  5. Langereis, S., Dirksen, A., Hackeng, T. M., van Genderen, M. H. P., Meijer, E. W. Dendrimers and magnetic resonance imaging. New J. Chem. 31 (7), 1152-1160 (2007).
  6. Gündüz, S., Power, A., Maier, M. E., Logothetis, N. K., Angelovski, G. Synthesis and Characterization of a Biotinylated Multivalent Targeted Contrast Agent. ChemPlusChem. 80 (3), 612-622 (2015).
  7. Pope, S. J. A., Kenwright, A. M., Heath, S. L., Faulkner, S. Synthesis and luminescence properties of a kinetically stable dinuclear ytterbium complex with differentiated binding sites. Chem. Commun. (13), 1550-1551 (2003).
  8. Vibhute, S. M., et al. Synthesis and characterization of pH-sensitive, biotinylated MRI contrast agents and their conjugates with avidin. Org. Biomol. Chem. 11 (8), 1294-1305 (2013).
  9. Vogel, A. I., Furniss, B. S. . Vogel’s textbook of practical organic chemistry. 5th ed. , (1989).
  10. Lundanes, E., Reubsaet, L., Greibrokk, T. . Chromatography : basic principles, sample preparations and related methods. , (2013).
  11. Barge, A., Cravotto, G., Gianolio, E., Fedeli, F. How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast Media Mol. Imaging. 1 (5), 184-188 (2006).
  12. Keeler, J. . Understanding NMR spectroscopy. 2nd ed. , (2010).
  13. Hillenkamp, F., Peter-Katalinić, J. . MALDI MS : a practical guide to instrumentation, methods and applications. , (2007).
  14. Peters, J. A., Huskens, J., Raber, D. J. Lanthanide induced shifts and relaxation rate enhancements. Prog. Nucl. Magn. Reson. Spectrosc. 28, 283-350 (1996).
  15. Averill, D. J., Garcia, J., Siriwardena-Mahanama, B. N., Vithanarachchi, S. M., Allen, M. J. Preparation, Purification, and Characterization of Lanthanide Complexes for Use as Contrast Agents for Magnetic Resonance Imaging. J. Vis. Exp. (53), e2844 (2011).
  16. Hagberg, G. E., Scheffler, K. Effect of r1 and r2 relaxivity of gadolinium-based contrast agents on the T1-weighted MR signal at increasing magnetic field strengths. Contrast Media Mol. Imaging. 8 (6), 456-465 (2013).
  17. Boswell, C. A., et al. Synthesis, characterization, and biological evaluation of integrin alpha(v)beta(3)-targeted PAMAM dendrimers. Mol. Pharmaceut. 5 (4), 527-539 (2008).
  18. Sherry, A. D., Caravan, P., Lenkinski, R. E. Primer on Gadolinium Chemistry. J. Magn. Reson. Imaging. 30 (6), 1240-1248 (2009).
  19. Cakić, N., Gündüz, S., Rengarasu, R., Angelovski, G. Synthetic strategies for preparation of cyclen-based MRI contrast agents. Tetrahedron Lett. 56 (6), 759-765 (2015).
  20. Polasek, M., Hermann, P., Peters, J. A., Geraldes, C. F. G. C., Lukes, I. PAMAM Dendrimers Conjugated with an Uncharged Gadolinium(III) Chelate with a Fast Water Exchange: The Influence of Chelate Charge on Rotational Dynamics. Bioconjugate Chem. 20 (11), 2142-2153 (2009).
  21. Ali, M. M., et al. Synthesis and relaxometric studies of a dendrimer-based pH-responsive MRI contrast agent. Chem. Eur. J. 14 (24), 7250-7258 (2008).
  22. Jackson, C. L., et al. Visualization of dendrimer molecules by transmission electron microscopy (TEM): Staining methods and Cryo-TEM of vitrified solutions. Macromolecules. 31 (18), 6259-6265 (1998).
  23. Jain, K., Kesharwani, P., Gupta, U., Jain, N. K. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm. 394 (1-2), 122-142 (2010).
  24. Rudovsky, J., et al. PAMAM dendrimeric conjugates with a Gd-DOTA phosphinate derivative and their adducts with polyaminoacids: The interplay of global motion, internal rotation, and fast water exchange. Bioconjugate Chem. 17 (4), 975-987 (2006).
  25. Xu, H., et al. Toward improved syntheses of dendrimer-based magnetic resonance imaging contrast agents: New bifunctional diethylenetriaminepentaacetic acid ligands and nonaqueous conjugation chemistry. J. Med. Chem. 50 (14), 3185-3193 (2007).
  26. Nwe, K., Bryant, L. H., Brechbiel, M. W. Poly(amidoamine) Dendrimer Based MRI Contrast Agents Exhibiting Enhanced Relaxivities Derived via Metal Preligation Techniques. Bioconjugate Chem. 21 (6), 1014-1017 (2010).
  27. Livramento, J. B., et al. First in vivo MRI assessment of a self-assembled metallostar compound endowed with a remarkable high field relaxivity. Contrast Media Mol. Imaging. 1 (1), 30-39 (2006).
  28. Norek, M., Kampert, E., Zeitler, U., Peters, J. A. Tuning of the Size of Dy2O3 Nanoparticles for Optimal Performance as an MRI Contrast Agent. J. Am. Chem. Soc. 130 (15), 5335-5340 (2008).
check_url/it/54776?article_type=t

Play Video

Citazione di questo articolo
Gündüz, S., Savić, T., Toljić, Đ., Angelovski, G. Preparation and In Vitro Characterization of Dendrimer-based Contrast Agents for Magnetic Resonance Imaging. J. Vis. Exp. (118), e54776, doi:10.3791/54776 (2016).

View Video