Summary

Den Colon-26 Carcinoma Tumor-bærende mus som en model for Studiet af Cancer Kakeksi

Published: November 30, 2016
doi:

Summary

Mice bearing the Colon-26 (C26) carcinoma represent a classical model of cancer cachexia. Progressive muscle wasting occurs in association with tumor growth, over-expression of muscle-specific ubiquitin ligases, and reductions in muscle cross-sectional area. Fat loss is also observed. Cachexia is studied in a time-dependent manner with increasing severity of wasting.

Abstract

Cancer cachexia is the progressive loss of skeletal muscle mass and adipose tissue, negative nitrogen balance, anorexia, fatigue, inflammation, and activation of lipolysis and proteolysis systems. Cancer patients with cachexia benefit less from anti-neoplastic therapies and show increased mortality1. Several animal models have been established in order to investigate the molecular causes responsible for body and muscle wasting as a result of tumor growth. Here, we describe methodologies pertaining to a well-characterized model of cancer cachexia: mice bearing the C26 carcinoma2-4. Although this model is heavily used in cachexia research, different approaches make reproducibility a potential issue. The growth of the C26 tumor causes a marked and progressive loss of body and skeletal muscle mass, accompanied by reduced muscle cross-sectional area and muscle strength3-5. Adipose tissue is also lost. Wasting is coincident with elevated circulating levels of pro-inflammatory cytokines, particularly Interleukin-6 (IL-6)3, which is directly, although not entirely, responsible for C26 cachexia. It is well-accepted that a primary mechanism by which the C26 tumor induces muscle tissue depletion is the activation of skeletal muscle proteolytic systems. Thus, expression of muscle-specific ubiquitin ligases, such as atrogin-1/MAFbx and MuRF-1, represent an accepted method for the evaluation of the ongoing muscle catabolism2. Here, we present how to execute this model in a reproducible manner and how to excise several tissues and organs (the liver, spleen, and heart), as well as fat and skeletal muscles (the gastrocnemius, tibialis anterior, and quadriceps). We also provide useful protocols that describe how to perform muscle freezing, sectioning, and fiber size quantification.

Introduction

Muskelsvind er en alvorlig komplikation af forskellige kliniske tilstande, såsom cancer, sepsis, lever, skrumpelever, hjerte og nyresvigt, kronisk obstruktiv lungesygdom, og AIDS. Især muskelsvind er tydeligt i mindst 50% af patienter med cancer 1. Tab af skeletmuskulatur i kræft resultater fra øget proteinnedbrydning på grund af over-aktivering af skelet muskler proteolytiske systemer og / eller fra nedsat proteinsyntese 6. Lipolyse er også tydeligt, hvilket fører til nedbrydning af fedtvæv. Klinisk kakeksi er forbundet med nedsat kvalitet og længden af livet og skønnes at være årsag til dødsfald i 20 – 30% af kræftpatienter 7. Anvendelse af eksperimentelle modeller, der ligner den humane sygdom så tæt som muligt ville være gavnligt. En optimal dyremodel er kendetegnet ved høj reproducerbarhed, samt ved begrænset interferens fra forskellige terapier og uforudsigelige faktorerkost, køn, og genetisk baggrund, der normalt er forbundet med den kliniske tilstand 8. Hidtil har cancer kakeksi undersøgt hovedsagelig i dyremodeller karakteriseret ved transplantation af cancerceller eller injektion af kræftfremkaldende stoffer, selv om en ny metode er at bruge genetisk modificerede mus er modtagelige for udvikling af kræft.

Mus med C26 carcinom (også omtalt som kolon-26 og adenocarcinom) repræsenterer en velkarakteriseret og ekstensivt anvendte model af cancer kakeksi 2,5. Væksten af C26 tumor resultater i krop og muskler vægttab, primært gennem øget fedt og protein katabolisme 9. Generelt er en 10% tumor vægt versus samlede kropsvægt forbundet med en reduktion på 20-25% i skeletmuskulatur vægt og en større udtømning af fedt 3,10. Hepatomegali og splenomegali også observeret med tumorvækst, sammen med aktiveringen af ​​den akutte fase respons og højden af ​​pro-inflationsmåletmmatory cytokinniveauer 3,11. Blandt disse er det velkendt, at IL-6 spiller en central rolle i mediering muskelsvind i C26-modellen, selv om dette cytokin er sandsynligvis ikke den eneste inducer af kakeksi 12. Forhøjet IL-6 forårsager muskelatrofi gennem aktivering af JAK / STAT3-vejen, og inhibering denne transskriptionsfaktor kan forhindre muskelsvind 3,4.

Under C26-induceret muskelsvind, som i mange betingelser for muskelatrofi, er muskelmasse tabt hovedsagelig gennem reduktioner i muskel protein indhold på tværs muskelfibre, ikke gennem celledød eller tab af fibre 13. I C26 kakeksi, er et skift i retning af mindre tværsnitsareal observeret i både glycolytiske og oxidative fibre 2. Dette er også i overensstemmelse med reduceret muskelstyrke 5. Mange grupper verden over har draget fordel af C26 model for at opdage nye mediatorer af muskelsvind eller klinisk relevante lægemidler til kræft cacHexia. Imidlertid er der rapporteret mange forskellige procedurer for brugen af ​​denne model, at hæve bekymringer om konsistensen af ​​de opnåede data og udgør hindringer for reproducerbarhed i forskellige eksperimentelle betingelser. Her rapporterer vi en typisk brug af denne model for studiet af kræft kakeksi, der giver standardiserede og reproducerbare data.

Protocol

Etik Statement: Alle undersøgelser, der er beskrevet blev godkendt af Institutional Animal Care og Brug udvalg i Thomas Jefferson University og Indiana University School of Medicine. 1. C26 cellevækst og Forberedelse Opnå C26 colorektale cancerceller (Ohio State University Medical Center (OSUMC)) og forberede komplet vækstmedium (dvs. høj glucose Dulbeccos modificerede Eagles medium (DMEM) indeholdende 10% føtalt bovint serum (FBS), 1 mM natriumpyruvat, 1% glutamin …

Representative Results

C26 tumor vækstkinetik viser en lag-fase for første 7 – 8 d efter injektion, efterfulgt af eksponentiel cellevækst (4 – 5d). Tumormassen når til sidst ~ 10% af legemsvægten (ca. 2 g; Figur 1A-B). Under den første fase, kan tumoren lokaliseres ved kun palpering og vises som en lille fremspring af huden. I den anden fase, er tumoren observeret som en masse under huden. Sjældent tumoren bliver sår, hvilket resulterer i et åbent sår; i dette tilfæ…

Discussion

Især i sine seneste stadier, er kolorektal cancer forbundet med udviklingen af ​​kakeksi, som er ansvarlig for fattigere resultater og reduktioner i patientens livskvalitet. Mange undersøgelser har fokuseret på behandling af tilstande sekundært til cancer; Men trods mange bestræbelser i denne retning, er der stadig ingen godkendt behandling for cancer kakeksi 21. Således er det bydende nødvendigt, at dyremodeller ligne den menneskelige patologi så tæt som muligt for at maksimere oversættelse af …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank Richard Lieber and Shannon Bremner for their ImageJ macro and instructions. While at Thomas Jefferson University, this work was supported by the Pennsylvania Department of Health CURE Grant TJU No. 080-37038-AI0801. Subsequently, this study was supported by a grant to AB from the National Institutes of Health (R21CA190028), and by grants to TAZ from the National Institutes of Health (R01CA122596, R01CA194593), the IU Simon Cancer Center, the Lustgarten Foundation, the Lilly Foundation, Inc., and the IUPUI Pancreas Signature Center.

Materials

Cell culture Flasks Falcon – Becton Dickinson 35-5001
DMEM Cellgro 10-017-CV
FBS Gibco 26140
Streptomycin-Penicillin  Cellgro 30-002-CI
CD2F1 mice Harlan 060
Anesthesia apparatus EZ-Anesthesia EZ-7000
2-Methyl Butane Sigma-Aldrich M32631
OCT Tissue-Tek 4583
Cryostat Leica CM1850
Cork disks Electron Microscopy Sciences 63305
Superfrost plus glass slides VWR 48311-703
Anti-Laminin Rabbit polyclonal antibody Sigma-Aldrich L9393
Anti-Dystrophin Mouse Monoclonal antibody Vector Laboratories VP-D508
Alexa Flour 594 anti-mouse IgG Life Technologies A11062
Alexa Flour 594 anti-rabbit IgG Life Technologies A21211
Hematoxylin Sigma-Aldrich GHS216
Eosin Sigma-Aldrich HT110332
Xylene Acros Organics 422680025
Cytoseal-XYL Thermo 8312-4
Microscope Zeiss Observer.Z1 
Bamboo Tablet Wacom CTH-661
Prism 7.0 for Mac OS X GraphPad Software, Inc.
Excel for Mac 2011 Microsoft Corp.
Image J US National Institutes of Health IJ1.46 http://rsbweb.nih.gov/ij/download.html
Microtainer BD 365873

Riferimenti

  1. Tan, B., Fearon, K. Cachexia: prevalence and impact in medicine. Curr Opin Clin Nutr Metab Care. 11, 400-407 (2008).
  2. Aulino, P., et al. Molecular cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse. BMC cancer. 10, 363 (2010).
  3. Bonetto, A., et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PloS One. 6, e22538 (2011).
  4. Bonetto, A., et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab. 303, E410-E421 (2012).
  5. Bonetto, A., et al. Deacetylase inhibitors modulate the myostatin/follistatin axis without improving cachexia in tumor-bearing mice. Current Cancer Drug Targets. 9, 608-616 (2009).
  6. Acharyya, S., et al. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. The Journal of Clinical Investigation. 114, 370-378 (2004).
  7. Fearon, K., et al. Definition and classification of cancer cachexia: an international consensus. The Lancet Oncology. 12, 489-495 (2011).
  8. Holecek, M. Muscle wasting in animal models of severe illness. Int J Exp Pathol. 93, 157-171 (2012).
  9. Acharyya, S., et al. Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell. 8, 421-432 (2005).
  10. Benny Klimek, ., E, M., et al. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochemical and Biophysical Research Communications. 391, 1548-1554 (2010).
  11. Pedroso, F. E., et al. Inflammation, organomegaly, and muscle wasting despite hyperphagia in a mouse model of burn cachexia. Journal of Cachexia, Sarcopenia and Muscle. 3, 199-211 (2012).
  12. Soda, K., Kawakami, M., Kashii, A., Miyata, M. Manifestations of cancer cachexia induced by colon 26 adenocarcinoma are not fully ascribable to interleukin-6. International journal of cancer. 62, 332-336 (1995).
  13. Costelli, P., et al. IGF-1 is downregulated in experimental cancer cachexia. American journal of physiology. Regulatory, Integrative and Comparative Physiology. 291, R674-R683 (2006).
  14. Palus, S., Akashi, Y., von Haehling, S., Anker, S. D., Springer, J. The influence of age and sex on disease development in a novel animal model of cardiac cachexia. International Journal of Cardiology. 133, 388-393 (2009).
  15. Norman, K., et al. Effect of sexual dimorphism on muscle strength in cachexia. Journal of Cachexia, Sarcopenia and Muscle. 3, 111-116 (2012).
  16. Stephens, N. A., et al. Sexual dimorphism modulates the impact of cancer cachexia on lower limb muscle mass and function. Clinical Nutrition. 31, 499-505 (2012).
  17. Cosper, P. F., Leinwand, L. A. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Ricerca sul cancro. 71, 1710-1720 (2011).
  18. Ullman-Cullere, M. H., Foltz, C. J. Body condition scoring: a rapid and accurate method for assessing health status in mice. Laboratory Animal Science. 49, 319-323 (1999).
  19. Bonetto, A., Andersson, D. C., Waning, D. L. Assessment of muscle mass and strength in mice. Bonekey Rep. 4, 732 (2015).
  20. Minamoto, V. B., et al. Increased efficacy and decreased systemic-effects of botulinum toxin A injection after active or passive muscle manipulation. Dev Med Child Neurol. 49, 907-914 (2007).
  21. Murphy, K., Lynch, G. Update on emerging drugs for cancer cachexia. Expert Opin Emerg Drugs. 14, 619-632 (2009).
  22. Seto, D. N., Kandarian, S. C., Jackman, R. W. A Key Role for Leukemia Inhibitory Factor in C26 Cancer Cachexia. The Journal of Biological Chemistry. 290, 19976-19986 (2015).
  23. Judge, S. M., et al. Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia. BMC Cancer. 14, 997 (2014).
  24. Kliewer, K. L., et al. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice. Cancer Biol Ther. 16, 886-897 (2015).
  25. Aversa, Z., et al. Changes in myostatin signaling in non-weight-losing cancer patients. Ann Surg Oncol. 19, 1350-1356 (2012).
  26. Bonetto, A., et al. Early changes of muscle insulin-like growth factor-1 and myostatin gene expression in gastric cancer patients. Muscle Nerve. 48, 387-392 (2013).
  27. Lazarus, D. D., et al. A new model of cancer cachexia: contribution of the ubiquitin-proteasome pathway. The American Journal of Physiology. 277, E332-E341 (1999).
  28. al-Majid, S., McCarthy, D. O. Resistance exercise training attenuates wasting of the extensor digitorum longus muscle in mice bearing the colon-26 adenocarcinoma. Biol Res Nurs. 2, 155-166 (2001).
  29. Bonetto, A., et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. American journal of physiology. Endocrinology and metabolism 303. 303, E410-E421 (2012).
  30. Samuels, S. E., et al. Liver protein synthesis stays elevated after chemotherapy in tumour-bearing mice. Cancer Lett. 239, 78-83 (2006).
  31. Cornwell, E. W., Mirbod, A., Wu, C. L., Kandarian, S. C., Jackman, R. W. C26 cancer-induced muscle wasting is IKKbeta-dependent and NF-kappaB-independent. PloS One. 9, e87776 (2014).
  32. Penna, F., et al. Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition. PloS One. 5, e13604 (2010).
check_url/it/54893?article_type=t

Play Video

Citazione di questo articolo
Bonetto, A., Rupert, J. E., Barreto, R., Zimmers, T. A. The Colon-26 Carcinoma Tumor-bearing Mouse as a Model for the Study of Cancer Cachexia. J. Vis. Exp. (117), e54893, doi:10.3791/54893 (2016).

View Video