Summary

结肠-26癌荷瘤小鼠为癌症恶病质的研究模型

Published: November 30, 2016
doi:

Summary

Mice bearing the Colon-26 (C26) carcinoma represent a classical model of cancer cachexia. Progressive muscle wasting occurs in association with tumor growth, over-expression of muscle-specific ubiquitin ligases, and reductions in muscle cross-sectional area. Fat loss is also observed. Cachexia is studied in a time-dependent manner with increasing severity of wasting.

Abstract

Cancer cachexia is the progressive loss of skeletal muscle mass and adipose tissue, negative nitrogen balance, anorexia, fatigue, inflammation, and activation of lipolysis and proteolysis systems. Cancer patients with cachexia benefit less from anti-neoplastic therapies and show increased mortality1. Several animal models have been established in order to investigate the molecular causes responsible for body and muscle wasting as a result of tumor growth. Here, we describe methodologies pertaining to a well-characterized model of cancer cachexia: mice bearing the C26 carcinoma2-4. Although this model is heavily used in cachexia research, different approaches make reproducibility a potential issue. The growth of the C26 tumor causes a marked and progressive loss of body and skeletal muscle mass, accompanied by reduced muscle cross-sectional area and muscle strength3-5. Adipose tissue is also lost. Wasting is coincident with elevated circulating levels of pro-inflammatory cytokines, particularly Interleukin-6 (IL-6)3, which is directly, although not entirely, responsible for C26 cachexia. It is well-accepted that a primary mechanism by which the C26 tumor induces muscle tissue depletion is the activation of skeletal muscle proteolytic systems. Thus, expression of muscle-specific ubiquitin ligases, such as atrogin-1/MAFbx and MuRF-1, represent an accepted method for the evaluation of the ongoing muscle catabolism2. Here, we present how to execute this model in a reproducible manner and how to excise several tissues and organs (the liver, spleen, and heart), as well as fat and skeletal muscles (the gastrocnemius, tibialis anterior, and quadriceps). We also provide useful protocols that describe how to perform muscle freezing, sectioning, and fiber size quantification.

Introduction

肌肉消瘦是各种临床病症,如癌症,败血症,肝,肝硬化,心脏和肾功能衰竭,慢性阻塞性肺疾病,与爱滋病的严重并发症。特别是,肌肉消瘦在癌症患者1的至少50%是显而易见的。在从增加的蛋白质降解由于骨骼肌蛋白水解系统和/或从的过度活化癌症结果骨骼肌损失蛋白质合成6下降。脂解也是明显的,导致脂肪组织的消耗。在临床上,恶病质与减少质量和生活的长度相关联,并且估计为死亡的20的原因-癌症患者7的30%。实验模型,尽可能地类似于人类疾病的使用将是有益的。最佳动物模型的特点是高的再现性,以及由来自不同疗法有限干扰和不可预知的因素饮食,性别,遗传背景,通常是与临床病症8相关联。到目前为止,癌症恶病质已经主要研究了在动物模型特征在于癌细胞或致癌物注射的移植,虽然新的方法是使用转基因小鼠易患癌症的发展。

荷的C26癌(也被称为结肠-26和腺癌)代表癌症恶病质2,5的充分表征的和广泛使用的模型。的C26肿瘤导致的身体和肌肉重量损失的生长,主要是通过加强脂肪和蛋白质分解代谢9。一般地,10%的肿瘤重量与总体重与减少的骨骼肌重量20-25%和脂肪3,10更大消耗相关联。肝脾肿大也与肿瘤生长观察,与急性期反应的活化和促infla的高度沿mmatory细胞因子水平3,11。在这些中,它是众所周知的,IL-6起着在C26模型中介肌肉消瘦举足轻重的作用,即使该细胞因子可能不是恶病质12的唯一诱导剂。升高的IL-6引起肌肉萎缩通过JAK / STAT3通路的活化,并且抑制该转录因子能够防止肌肉萎缩3,4。

期间C26诱导肌肉消瘦,如肌肉萎缩的许多条件,肌肉质量在很大程度上是通过横跨肌纤维在肌肉蛋白质含量减少丢失,不通过细胞死亡或纤维13的损失。在C26恶病质,向更小的截面积的移位在两个糖酵解和氧化纤维2被观察到。这也具有降低的肌力5一致。全球许多团体,以便及时发现癌症CAC肌肉萎缩的新的调解员或临床相关的药品采取了C26型号的优势河虾。然而,对于使用这种模式的许多不同的程序已经报道,提高对所获得的数据的一致性的担忧,并在不同的实验条件下构成障碍重复性。这里,我们报告的产生标准化的和可重复的数据癌症恶病质的研究中通常会使用此模式。

Protocol

伦理学声明:描述了托马斯·杰斐逊大学的机构动物护理和使用委员会和医学的印第安纳大学医学院获得批准的所有研究。 1. C26细胞生长和准备获得C26结肠癌细胞(俄亥俄州立大学医学中心(OSUMC)),并准备完整生长培养基( 即,高葡萄糖的Dulbecco改良的Eagle氏培养基(DMEM)中含有10%胎牛血清(FBS),1mM丙酮酸钠,1%谷氨酰胺和1%链霉素/青霉素)。 ?…

Representative Results

C26肿瘤生长动力学显示第一个7滞后相位 – 注射后8天,随后指数细胞生长(4 – 5 D)。肿瘤块最终到达〜体重的10%(约2克; 图 1A-B)。在第一阶段中,肿瘤可以仅触诊被定位和显示为皮肤的一小突出部。在第二阶段中,肿瘤被观察为在皮肤下质量。很少,肿瘤变得溃烂,导致一个开放的伤口;在这种情况下,鼠标从实验组中排除,并且安乐死。 </p…

Discussion

特别是在其最新的阶段,大肠癌与恶病质的发展,这是负责不良预后和患者的生活质量降低有关。许多研究都集中在继发于癌症疾病的治疗;然而,尽管在这个方向上许多努力,但仍是癌症恶病质21没有批准的治疗。因此,当务之急是动物模型,以便最大限度地发现的翻译尽可能类似于人体病理学。

C26荷瘤小鼠是癌症恶病质22-24的一种常用的实验模型。这种模?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank Richard Lieber and Shannon Bremner for their ImageJ macro and instructions. While at Thomas Jefferson University, this work was supported by the Pennsylvania Department of Health CURE Grant TJU No. 080-37038-AI0801. Subsequently, this study was supported by a grant to AB from the National Institutes of Health (R21CA190028), and by grants to TAZ from the National Institutes of Health (R01CA122596, R01CA194593), the IU Simon Cancer Center, the Lustgarten Foundation, the Lilly Foundation, Inc., and the IUPUI Pancreas Signature Center.

Materials

Cell culture Flasks Falcon – Becton Dickinson 35-5001
DMEM Cellgro 10-017-CV
FBS Gibco 26140
Streptomycin-Penicillin  Cellgro 30-002-CI
CD2F1 mice Harlan 060
Anesthesia apparatus EZ-Anesthesia EZ-7000
2-Methyl Butane Sigma-Aldrich M32631
OCT Tissue-Tek 4583
Cryostat Leica CM1850
Cork disks Electron Microscopy Sciences 63305
Superfrost plus glass slides VWR 48311-703
Anti-Laminin Rabbit polyclonal antibody Sigma-Aldrich L9393
Anti-Dystrophin Mouse Monoclonal antibody Vector Laboratories VP-D508
Alexa Flour 594 anti-mouse IgG Life Technologies A11062
Alexa Flour 594 anti-rabbit IgG Life Technologies A21211
Hematoxylin Sigma-Aldrich GHS216
Eosin Sigma-Aldrich HT110332
Xylene Acros Organics 422680025
Cytoseal-XYL Thermo 8312-4
Microscope Zeiss Observer.Z1 
Bamboo Tablet Wacom CTH-661
Prism 7.0 for Mac OS X GraphPad Software, Inc.
Excel for Mac 2011 Microsoft Corp.
Image J US National Institutes of Health IJ1.46 http://rsbweb.nih.gov/ij/download.html
Microtainer BD 365873

Riferimenti

  1. Tan, B., Fearon, K. Cachexia: prevalence and impact in medicine. Curr Opin Clin Nutr Metab Care. 11, 400-407 (2008).
  2. Aulino, P., et al. Molecular cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse. BMC cancer. 10, 363 (2010).
  3. Bonetto, A., et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PloS One. 6, e22538 (2011).
  4. Bonetto, A., et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab. 303, E410-E421 (2012).
  5. Bonetto, A., et al. Deacetylase inhibitors modulate the myostatin/follistatin axis without improving cachexia in tumor-bearing mice. Current Cancer Drug Targets. 9, 608-616 (2009).
  6. Acharyya, S., et al. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. The Journal of Clinical Investigation. 114, 370-378 (2004).
  7. Fearon, K., et al. Definition and classification of cancer cachexia: an international consensus. The Lancet Oncology. 12, 489-495 (2011).
  8. Holecek, M. Muscle wasting in animal models of severe illness. Int J Exp Pathol. 93, 157-171 (2012).
  9. Acharyya, S., et al. Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell. 8, 421-432 (2005).
  10. Benny Klimek, ., E, M., et al. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochemical and Biophysical Research Communications. 391, 1548-1554 (2010).
  11. Pedroso, F. E., et al. Inflammation, organomegaly, and muscle wasting despite hyperphagia in a mouse model of burn cachexia. Journal of Cachexia, Sarcopenia and Muscle. 3, 199-211 (2012).
  12. Soda, K., Kawakami, M., Kashii, A., Miyata, M. Manifestations of cancer cachexia induced by colon 26 adenocarcinoma are not fully ascribable to interleukin-6. International journal of cancer. 62, 332-336 (1995).
  13. Costelli, P., et al. IGF-1 is downregulated in experimental cancer cachexia. American journal of physiology. Regulatory, Integrative and Comparative Physiology. 291, R674-R683 (2006).
  14. Palus, S., Akashi, Y., von Haehling, S., Anker, S. D., Springer, J. The influence of age and sex on disease development in a novel animal model of cardiac cachexia. International Journal of Cardiology. 133, 388-393 (2009).
  15. Norman, K., et al. Effect of sexual dimorphism on muscle strength in cachexia. Journal of Cachexia, Sarcopenia and Muscle. 3, 111-116 (2012).
  16. Stephens, N. A., et al. Sexual dimorphism modulates the impact of cancer cachexia on lower limb muscle mass and function. Clinical Nutrition. 31, 499-505 (2012).
  17. Cosper, P. F., Leinwand, L. A. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Ricerca sul cancro. 71, 1710-1720 (2011).
  18. Ullman-Cullere, M. H., Foltz, C. J. Body condition scoring: a rapid and accurate method for assessing health status in mice. Laboratory Animal Science. 49, 319-323 (1999).
  19. Bonetto, A., Andersson, D. C., Waning, D. L. Assessment of muscle mass and strength in mice. Bonekey Rep. 4, 732 (2015).
  20. Minamoto, V. B., et al. Increased efficacy and decreased systemic-effects of botulinum toxin A injection after active or passive muscle manipulation. Dev Med Child Neurol. 49, 907-914 (2007).
  21. Murphy, K., Lynch, G. Update on emerging drugs for cancer cachexia. Expert Opin Emerg Drugs. 14, 619-632 (2009).
  22. Seto, D. N., Kandarian, S. C., Jackman, R. W. A Key Role for Leukemia Inhibitory Factor in C26 Cancer Cachexia. The Journal of Biological Chemistry. 290, 19976-19986 (2015).
  23. Judge, S. M., et al. Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia. BMC Cancer. 14, 997 (2014).
  24. Kliewer, K. L., et al. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice. Cancer Biol Ther. 16, 886-897 (2015).
  25. Aversa, Z., et al. Changes in myostatin signaling in non-weight-losing cancer patients. Ann Surg Oncol. 19, 1350-1356 (2012).
  26. Bonetto, A., et al. Early changes of muscle insulin-like growth factor-1 and myostatin gene expression in gastric cancer patients. Muscle Nerve. 48, 387-392 (2013).
  27. Lazarus, D. D., et al. A new model of cancer cachexia: contribution of the ubiquitin-proteasome pathway. The American Journal of Physiology. 277, E332-E341 (1999).
  28. al-Majid, S., McCarthy, D. O. Resistance exercise training attenuates wasting of the extensor digitorum longus muscle in mice bearing the colon-26 adenocarcinoma. Biol Res Nurs. 2, 155-166 (2001).
  29. Bonetto, A., et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. American journal of physiology. Endocrinology and metabolism 303. 303, E410-E421 (2012).
  30. Samuels, S. E., et al. Liver protein synthesis stays elevated after chemotherapy in tumour-bearing mice. Cancer Lett. 239, 78-83 (2006).
  31. Cornwell, E. W., Mirbod, A., Wu, C. L., Kandarian, S. C., Jackman, R. W. C26 cancer-induced muscle wasting is IKKbeta-dependent and NF-kappaB-independent. PloS One. 9, e87776 (2014).
  32. Penna, F., et al. Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition. PloS One. 5, e13604 (2010).

Play Video

Citazione di questo articolo
Bonetto, A., Rupert, J. E., Barreto, R., Zimmers, T. A. The Colon-26 Carcinoma Tumor-bearing Mouse as a Model for the Study of Cancer Cachexia. J. Vis. Exp. (117), e54893, doi:10.3791/54893 (2016).

View Video