Summary

Proksimal afdød Lårben Forberedelse til brudstyrken Test og Quantitative CT-baserede Finite Element Analysis

Published: March 11, 2017
doi:

Summary

Vi præsenterer en robust protokol om, hvordan man omhyggeligt bevare og forberede Nekro lår for fraktur test og kvantitativ computertomografi billeddannelse. Fremgangsmåden tilvejebringer præcis kontrol over input betingelser med henblik på at bestemme forholdet mellem knoglemineraltæthed, brudstyrken, og definere finite element model geometri og egenskaber.

Abstract

Nekro fraktur test anvendes rutinemæssigt til at forstå faktorer, der påvirker proximal femur styrke. Fordi ex vivo biologisk væv er tilbøjelige til at miste deres mekaniske egenskaber over tid, modellen skal udføres forberedelse til eksperimentelle test omhyggeligt for at opnå pålidelige resultater, der repræsenterer in vivo betingelser. Derfor har vi designet en protokol og et sæt inventar til at forberede de femorale prøver således, at deres mekaniske egenskaber oplevet minimale ændringer. Femora blev holdt i frossen tilstand, undtagen ved tilberedningen trin og mekanisk prøvning. De relevante kliniske foranstaltninger af total hofte og lårbenshals knoglemineraltæthed (BMD) blev opnået med et klinisk dobbelt røntgenabsorptiometri (DXA) knogle densitometer, og 3D-geometri og distribution af knoglemineral blev opnået ved anvendelse CT med en kalibrering fantom for kvantitative skøn baseret på gråtone værdier. Enhver mulig knoglesygdom, frakturEller tilstedeværelsen af ​​implantater eller artefakter påvirker knoglestruktur, blev udelukket med X-ray scanninger. For forberedelse blev alle knogler omhyggeligt renset for overskydende blødt væv, og blev skåret og potteplanter på det interne rotation vinkel af interesse. En skærende fikstur tillod den distale ende af knoglen, der skal afskæres forlader den proximale femur ved en ønsket længde. For at tillade positionering af lårbenshalsen på foreskrevne vinkler under senere CT scanning og mekanisk prøvning, blev de proximale femorale aksler pottet i polymethylmethacrylat (PMMA) med en armatur designet specielt til de ønskede orienteringer. De indsamlede fra vores eksperimenter data blev derefter anvendt til validering af kvantitativ computertomografi (QCT) -baseret finite element analyse (FEA), som beskrevet i en anden protokol. I dette manuskript, præsenterer vi protokol for den præcise forberedelse knogle til mekanisk afprøvning og efterfølgende QCT / FEA modellering. Den nuværende protokol blev anvendt med succes til at forberede omkring 200 cadaveric lårben over en 6-års periode.

Introduction

Determining the true cadaveric proximal femoral fracture strength with mechanical testing is a destructive method that requires a rigorous testing approach for accurate measurements. In particular, proper bone preparation methods are necessary to maintain near in vivo integrity of the bones prior to mechanical fracture testing1. This is achieved by proper bone storage and minimizing handling at room temperature. This test data is extensively used to validate QCT/FEA models of femoral fracture which have the potential to be used clinically to understand the fracture risk, especially in osteoporotic patients. Unfortunately, there is no current standard procedure to prepare proximal femur samples for mechanical testing. A good testing procedure should ensure repeatability and reproducibility of the preparation process. Therefore, fixtures required for sample preparation need to be carefully designed and fabricated to minimize the likelihood of various testing errors. We also need to minimize the preparation time for which bone tissue is at room temperature and thus in danger of degradation with irreversible changes in mechanical properties.

To this end, we have developed a procedure that preserves bone tissue across multiple preparation steps. This is important to ensure minimal exposure time at room temperature while also minimizing the number of freeze/thaw cycles which can affect tissue physical properties2. The entire procedure is long and nontrivial as the steps occurred over multiple weeks and required scheduling for scanning procedures and personnel availability. The steps included thawing bone samples, screening the samples using DXA scanning to obtain bone mineral density (BMD) values, X-ray to rule out any diseased specimens, and finally CT scanning to estimate distribution of bone mineral and femoral geometry. All the specimens were prepared for testing by removing extraneous soft tissues from the bone surface, cutting the femur to a length required for testing, and potting the femur in a desired orientation for simulating a sideways fall on the hip during subsequent testing. It is essential to keep the time period for all these operations as short as possible. A robust protocol is thus mandatory for consistent specimen preparation, tissue preservation between steps, and for reducing the overall preparation time.

The aim of this paper is to present in detail the procedures involved in the preparation of femoral samples for subsequent mechanical testing under various conditions. Preservation of the bone tissue is crucial in this process and we achieved it by keeping specimens frozen between steps and keeping them carefully wrapped in saline saturated towels at all times except when scanning and mechanically testing the bones. Femora were also kept wrapped in saline wet towels during the steps involving PMMA curing to prevent dryness of the bone tissue.

Protocol

BEMÆRK: Alle undersøgelser præsenteres i denne protokol blev godkendt af Institutional Review Board (IRB) på Mayo Clinic. Knoglerne blev opnået over en periode på 6 år fra forskellige organisationer. Alle prøver blev indsamlet inden for 72 timer død, svøbt i saltvand mættede håndklæder, og opbevares ved -20 ° C indtil forberedelse. 1. Måling Bone Mineral Density Brug DXA Fjern eksemplarer, der holdes ved -20 ° C fryser tø op ved stuetemperatur i ca. 24 timer; prø…

Representative Results

De kadaver lårben blev afsendt frosset og holdt ved -20 ° C indtil fremstilling begyndte. BMD scanning blev udført under anvendelse af en DXA scanner til at måle total hofte og BMD samt T-score for hver prøve (figur 1). En T-score er antallet af standardafvigelser af målte BMD sammenlignet med gennemsnitlige værdier for unge raske forsøgspersoner. Det kan være lige fra -2,5 eller lavere for osteoporotiske knogler, mellem -1 og -2,5 for osteopeniske knogler og h?…

Discussion

Vi præsenteret en robust knogle forberedelse protokol for at sikre mekanisk afprøvning og QCT / FEA modellering af femoral styrke i en sidelæns fald på hoften konfiguration. Denne metode blev vores standard in-house-protokol. I løbet af 6 år, med varierende personale, omkring 200 lårben lykkedes udarbejdet efter denne protokol. Resultaterne af protokollen omfatter klassificere knogle betingelser ved hjælp af DXA, udelukke metastatiske sygdomme, tidligere frakturer, eller implantater ved hjælp af røntgen, og f?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Vi vil gerne takke Materialer og strukturel test Core Facility ved Mayo Clinic til teknisk support. Desuden vil vi gerne takke Lawrence J. Berglund, Brant Newman, Jorn op den Buijs, Ph.D., for deres hjælp i løbet af undersøgelsen. Denne undersøgelse blev støttet af Grainger Fornyelsesfonden fra Grainger Foundation.

Materials

CT potting container and scanning fixture Internally manufactured N/A Custom designed and manufactured
CT scanner Siemens Somatom Definition scanner (Siemens, Malvern, PA) CT scanning equipment
Quantitative CT Phantom Midways Inc, San Francisco, CA Model 3 CT calibration Phantom Used for obtaining BMD values from Hounsfield units in the CT image
Dual Energy X-ray Absorptiometry scanner General Electric N/A GE Lunar iDXA scanner for bone health or any similar BMD scanners
Hygenic Orhodontic Resin (PMMA) Patterson Dental Supply H02252 Controlled substance and can be purchased with proper approval
Freezer Kenmore N/A This is a -20oC storage for bones
X-ray scanner General Electric  46-270615P1 X-ray imaging equipment.  
X-ray films Kodak N/A Used to display x-ray images
X-ray developer Kodak X-Omatic M35A X-OMAT  Used for developing X-ray images
X-ray Cassette Kodak X-Omatic N/A Used for holding x-ray films
5-pound Rice Bags Great Value N/A  Used for mimicking soft tissue during the DXA scanning process
Physiologic Saline (0.9% Sodium Chloride) Baxter NDC 0338-0048-04 Used for keeping samples hydrated
Scalpels and scrapers Bard-Parker N/A Used to clean the bone from soft tissue
Cast cutter Stryker 810-BD001 Used to cut femoral shaft
Drilling machine Bosch N/A Used to drill the femoral shaft
Fume Hood Hamilton 70532 Used for ventilation when using making PMMA

Riferimenti

  1. Cristofolini, L., Schileo, E., Juszczyk, M., Taddei, F., Martelli, S., Viceconti, M. Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments. Philos Trans A Math Phys Eng Sci. 368, 2725-2763 (2010).
  2. Cartner, J. L., Hartsell, Z. M., Ricci, W. M., Tornetta, P. Can we trust ex vivo mechanical testing of fresh-frozen cadaveric specimens? The effect of postfreezing delays. J Orthop Trauma. 25 (8), 459-461 (2011).
  3. An, Y. H., Draughn, R. A. . Mechanical testing of bone and the bone-implant interface. , (1999).
  4. van Haaren, E. H., van der Zwaard, B. C., van der Veen, A. J., Heyligers, I. C., Wuisman, P. I., Smit, T. H. Effect of long-term preservation on the mechanical properties of cortical bone in goats. Acta Orthop. 79, 708-716 (2008).
  5. Shaw, J. M., Hunter, S. A., Gayton, J. C., Boivin, G. P., Prayson, M. J. Repeated freeze-thaw cycles do not alter the biomechanical properties of fibular allograft bone. Clin Orthop Relat Res. 470 (3), 937-943 (2012).
  6. Topp, T., et al. Embalmed and fresh frozen human bones in orthopedic cadaveric studies: which bone is authentic and feasible?. Acta Orthop. 83 (5), 543-547 (2012).
  7. Manske, S., et al. Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int. 20 (3), 445-453 (2009).
  8. Rezaei, A., Dragomir-Daescu, D. Femoral Strength Changes Faster With Age Than BMD in Both Women and Men: A Biomechanical Study. J Bone Miner Res. 30, 2200-2206 (2015).
  9. Cristofolini, L., McNamara, B., Freddi, A., Viceconti, M. In vitro measured strains in the loaded femur: quantification of experimental error. J Strain Anal Eng Des. 32, 193-200 (1997).
  10. Dragomir-Daescu, D., et al. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng. 39, 742-755 (2011).
check_url/it/54925?article_type=t

Play Video

Citazione di questo articolo
Dragomir-Daescu, D., Rezaei, A., Uthamaraj, S., Rossman, T., Bronk, J. T., Bolander, M., Lambert, V., McEligot, S., Entwistle, R., Giambini, H., Jasiuk, I., Yaszemski, M. J., Lu, L. Proximal Cadaveric Femur Preparation for Fracture Strength Testing and Quantitative CT-based Finite Element Analysis. J. Vis. Exp. (121), e54925, doi:10.3791/54925 (2017).

View Video