Summary

二氧化钛<sub> 2</sub与由软化学法合成的超疏水性和高IR反射属性>涂覆的空心玻璃微球

Published: April 26, 2017
doi:

Summary

This manuscript proposes a soft-chemistry method to synthesize superhydrophobic, TiO2-coated hollow glass microspheres (HGM) with high IR-reflective properties.

Abstract

这个手稿提出了一种软的化学方法来开发超疏水和高度反射IR的中空玻璃微球(HGM)。锐钛矿TiO 2和超疏水试剂在一个步骤中被涂覆在HGM表面上。 TBT和PFOTES被选定为分别将Ti源和所述超疏水性剂,。他们都涂覆在HGM,和水热工艺之后,TBT转向锐钛矿TiO 2的。以这种方式,一个PFOTES / TiO 2的涂覆的HGM(MCHGM)中的溶液制备。为了进行比较,PFOTES单面涂布HGM(F-SCHGM)和TiO 2单面涂布HGM(TI-SCHGM)的合成,以及。的PFOTES和TiO 2个的涂料HGM表面上是通过X射线衍射(XRD),扫描电子显微镜(SEM)和能量色散检测器(EDS)表征证实。所述MCHGM表现出较高的接触角(153°),但比F-SCHGM下滑动角度(16°),与141.2的接触角6;和滑动的67°角。此外,两个的Ti-SCHGM和MCHGM显示类似IR反射率值,这是比原来的HGM和F-SCHGM高约5.8%。此外,PFOTES涂层几乎没有变化的热传导率。因此,F-SCHGM,用0.0479 W /(米·K)的热导率,是相当像原来HGM,为0.0475 W /(米·K)。 MCHGM和Ti-SCHGM也相似。其热导率值分别为0.0543 W /(米·K)和0.0543 W /(米·K),分别。将TiO 2涂层稍微增加的热导率,但与反射率的增加,总的热绝缘性能增强。最后,由于IR反射特性由HGM涂层提供,如果该涂层被弄脏时,反射率降低。因此,具有超疏水涂层,所述表面被保护免受污染,并且其寿命也延长。

Introduction

中空玻璃微球(HGM)是尺寸范围从10至100微米的无机材料。他们证明了许多有用的特性,如优良的分散性,高流动性,低的密度,和优异的热绝缘性质1,2,3,4。由于它们的中空结构的,HGM具有极低的热导率10,11。由于这些原因,它们在许多领域得到应用,包括航空航天工程5,深海勘探6,7,储氢8, 图9, 等等 。然而,它们仍表现出一些缺点,如低的强度。此外,IR光能够通过HGM以发送和后面加热的主题。为此即,在HGM表面改性是必不可少的减少辐射的热传递。一种有效的方法是涂覆一个IR阻挡材料涂敷到表面HGM。作为半导体,TiO 2的已经在许多领域,如光催化12, 图13,太阳能电池的开发,制造传感器14,环境应用15,并且能量存储16中使用。此外,它也示出了在可见光和红外光带17,18,19低发射率。因此,对我们而言, 氧化钛是一种谨慎的选择,由于其相对较低的价格和较高的性能。

然而,涂层是很容易的污染物犯规,这严重影响了二氧化钛反射率。反射率要逐步缩小。因此,SELF-清洁涂层是必不可少的,以防止从结垢涂层并延长这种涂层的工作时间。

在该手稿,使用软化学方法来开发超疏水的TiO 2涂覆的HGM。钛酸四丁酯(TBT)和1H,1H,2H,2H- perfluorooctyltriethoxysilane(PFOTES)被选定为分别将Ti源和超疏水性剂,。他们被水解并沉积在HGM表面上。然后,在水热工艺之后,锐钛矿型的TiO 2形成的HGM表面上,并且所述超疏水性依然存在。为了进行比较,PFOTES单面涂布HGM(F-SCHGM)和TiO 2单面涂布HGM(TI-SCHGM)的合成,以及。合成方案示于图1。

Protocol

HGM的1.预处理放置HGM成的500-mL烧杯中,用200mL无水乙醇;不间断的HGM的低密度性使得其在醇暂停,但由于破碎HGM的密度比醇的较大的,它在溶液中沉淀。 30分钟后,在用于进一步应用的烘箱使用干净的勺子和干燥在80℃下收集悬浮的HGM。 2. MCHGM的合成放置5克不间断HGM的,47.5毫升乙醇和2.5毫升DI水在三颈烧瓶中。搅拌用马达的混合,在400转/分钟进行20分钟(预…

Representative Results

在步骤4.4测试显示许多功能和样品的特性。的XRD( 图2)反映的锐钛矿TiO 2的形成。的SEM( 图3)和EDS( 图4)显示该TiO 2和PFOTES被涂覆在HGM表面上。的接触角( 图5)和滑动角( 图6)的测试表示超疏水性。的可见近红外透射率的测试( 图8)说明了的TiO 2涂层的反射特性,?…

Discussion

在该手稿,在协议的关键步骤是在水热过程。它影响的TiO 2的形成,最终的反射率,和超疏水性。温度控制和反应时间也相当显著。如果反应条件发生变化,最终产品可以是有缺陷的。

此方法提供了一种简单的方法来合成超疏水和高度反射IR的HGM中的一个步骤。在以前的研究中,超疏水性和反射性通过单独的装置28,29,…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

在本文介绍的工作是从CII-HK /香港理工大学创新基金的资助。进一步支持由深圳孔雀计划(KQTD2015071616442225)和中国政府的“千人”计划(Y62HB31601)提供。此外,从应用生物系化工科技香港理工大学和香港理工大学研究院城市可持续发展(RISUD)的帮助表示赞赏。

Materials

HGM Technical Institute of Physics and Chemistry, Chinese Academy of Science N/A N/A
TBT Sigma-Aldrich CAS#: 5593-70-4 Analytical grade
Ethyl Alcohol Sigma-Aldrich CAS#: 64-17-5 Analytical grade
PFOTES Sigma-Aldrich CAS#: 51851-37-7 98%

Riferimenti

  1. Yung, K. C., Zhu, B. L., Yue, T. M., Xie, C. S. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos. Sci. Technol. 69 (2), 260-264 (2008).
  2. Xu, N., Dai, J., Zhu, Z., Huang, X., Wu, P. Synthesis and characterization of hollow glass-ceramics microspheres. Compos. Sci. Technol. 72 (4), 528-532 (2011).
  3. Li, B., Yuan, J., An, Z., Zhang, J. Effect of microstructure and physical parameters of hollow glass microsphere on insulation performance. Mater. Lett. 65 (12), 1992-1994 (2011).
  4. Hu, Y., Mei, R., An, Z., et al. Silicon rubber/hollow glass microsphere composites: Influence of broken hollow glass microsphere on mechanical and thermal insulation property. Compos. Sci. Technol. 79, 64-69 (2013).
  5. Geleil, A. S., Hall, M. M., Shelby, J. E. Hollow glass microspheres for use in radiation shielding. J. Non-Cryst. Solids. 352, 620-625 (2006).
  6. Khimiya. . Handbook of Fillers for Polymeric Composite Materials [Russian translation]. , (1981).
  7. Greiner-Bar, G. HoNe Mikroglaskugeln. Herstellung, Eigenschaften und Anwendung. Silikattechnik. 40 (1), 23-25 (1989).
  8. Kool, L. B. Method for storing hydrogen, and related articles and systems. United States Patent. , (2010).
  9. Brow, R. K., Schmitt, M. L. A survey of energy and environmental application of glass. J. Eur. Ceram. Soc. 29, 1193-1201 (2009).
  10. Awaja, F., Arhatari, B. D. X-ray Micro Computed Tomography investigation of accelerated thermal degradation of epoxy resin/glass microsphere syntactic foam. Composites Part A. 40 (8), 1217-1222 (2009).
  11. Wang, S., Luo, R., Ni, Y. Preparation and characterization of resin-derived carbon foams reinforced by hollow ceramic microspheres. Mater. Sci. Eng., A. 527 (15), 3392-3395 (2010).
  12. Carp, O., Huisman, C. L., Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32 (1), 33-177 (2004).
  13. Fujishima, A., Rao, T. N., Tryk, D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C. 1 (1), 1-21 (2000).
  14. Fujishima, A. Electrochemical photolysis of water at a semiconductor electrode. Nature. 238 (5358), 37-38 (1972).
  15. Hoffmann, M. R., Martin, S. T., Choi, W., et al. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95 (1), 69-96 (1995).
  16. Chen, X., Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107 (7), 2891-2959 (2007).
  17. Yuan, J., An, Z., Li, B., et al. Facile aqueous synthesis and thermal insulating properties of low-density glass/TiO2 core/shell composite hollow spheres. Particuology. 10 (4), 475-479 (2012).
  18. Yan, H., Yuanhao, W., Hongxing, Y. TEOS/silane coupling agent composed double layers structure: A novel super-hydrophilic coating with controllable water contact angle value. Appl. Energy. , (2015).
  19. Wang, Y., Yang, H., Lu, L. Three-dimensional double deck meshlike dye-sensitized solar cells. J. Appl. Phys. 108 (6), 064510 (2010).
  20. Wang, Y., Yang, H., Xu, H. DNA-like dye-sensitized solar cells based on TiO 2 nanowire-covered nanotube bilayer film electrodes. Mater. Lett. 64 (2), 164-166 (2010).
  21. Wang, Y., Lu, L., Yang, H., et al. Development of high dispersed TiO2 paste for transparent screen-printable self-cleaning coatings on glass. J. Nanopart. Res. 15 (1), 1-6 (2013).
  22. Kwok, D. Y., Neumann, A. W. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 81 (3), 167-249 (1999).
  23. Pierce, E., Carmona, F. J., Amirfazli, A. Understanding of sliding and contact angle results in tilted plate experiments. Colloids Surf., A. 323 (1), 73-82 (2008).
  24. Kim, W. S., Kim, T. H., Kim, E. S., et al. Microwave dielectric properties and far infrared reflectivity spectra of the (Zr0. 8Sn0. 2) TiO4 ceramics with additives. Jpn. J. Appl. Phys. 37 (9S), 5367 (1998).
  25. Hasselman, D. P. H., Johnson, L. F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21 (6), 508-515 (1987).
  26. Cassie, A. B. D., Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546-551 (1944).
  27. Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. Res. 28 (8), 988-994 (1936).
  28. Shirtcliffe, N. J., McHale, G., Newton, M. I., et al. Intrinsically superhydrophobic organosilica sol-gel foams. Langmuir. 19 (14), 5626-5631 (2003).
  29. Rothstein, J. P. Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89-109 (2010).
  30. Rodošek, M., Kreta, A., Gaberšček, M., et al. Ex situ IR reflection-absorption and in situ AFM electrochemical characterisation of the 1, 2-bis (trimethoxysilyl) ethane-based protective coating on AA 2024 alloy. Corros. Sci. 102, 186-199 (2016).
  31. Jiang, J., Zhang, J., Zhu, P., et al. High pressure studies of Ni 3[(C 2 H 5 N 5) 6 (H 2 O) 6](NO 3) 6· 1.5 H 2 O by Raman scattering, IR absorption, and synchrotron X-ray diffraction. RSC Adv. 6 (69), 65031-65037 (2016).
  32. Arukalam, I. O., Oguzie, E. E., Li, Y. Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel. Journal of Colloid and Interface Science. 484, 220-228 (2016).
  33. Hou, W., Xiao, Y., Han, G., et al. Serrated, flexible and ultrathin polyaniline nanoribbons: An efficient counter electrode for the dye-sensitized solar cell. J. Power Sources. 322, 155-162 (2016).
check_url/it/55389?article_type=t

Play Video

Citazione di questo articolo
Wong, Y., Zhong, D., Song, A., Hu, Y. TiO2-coated Hollow Glass Microspheres with Superhydrophobic and High IR-reflective Properties Synthesized by a Soft-chemistry Method. J. Vis. Exp. (122), e55389, doi:10.3791/55389 (2017).

View Video