Summary

Перенос способности формирования молочной железы между базальными эпителиальными клетками молочной железы и люминальными клетками молочной железы через внеклеточные везикулы / экзосомы

Published: June 03, 2017
doi:

Summary

В этом протоколе описаны способы очистки, количественного определения и характеризации внеклеточных везикул (EV) / экзосомы из неадгезивных / мезенхимальных эпителиальных клеток молочной железы и для их использования для передачи способности формирования молочной железы к эпителиальным клеткам просвета молочной железы. EVs / экзосомы, полученные из стволовых эпителиальных клеток молочной железы, могут передавать это свойство клеток клеткам, которые поглощают EV / экзосомы.

Abstract

Клетки могут взаимодействовать через экзосомы, внеклеточные везикулы (ЭП) ~ 100 нм, содержащие белки, липиды и нуклеиновые кислоты. Внеклеточные везикулы из неадгезивных / мезенхимальных эпителиальных клеток молочной железы (NAMEC) могут быть выделены из среды NAMEC с помощью дифференциального ультрацентрифугирования. Основываясь на их плотности, EVs можно очистить ультрацентрифугированием при 110 000 x g. Препарат EV из ультрацентрифугирования может быть дополнительно отделен с использованием непрерывного градиента плотности для предотвращения загрязнения растворимыми белками. Затем очищенные EV могут быть дополнительно оценены с использованием анализа отслеживания наночастиц, который измеряет размер и количество везикул в препарате. Внеклеточные везикулы размером от 50 до 150 нм являются экзосомами. Выведенные NAMEC EVs / экзосомы могут проникать в эпителиальные клетки молочной железы, которые могут быть измерены с помощью проточной цитометрии и конфокальной микроскопии. Некоторые свойства стволовых клеток молочной железы ( например, способность к образованию молочной железы) могутПереносится из стеблеподобных NAMEC в клетки эпителия молочной железы через EVs / экзосомы, полученные из NAMEC. Отдельные первичные эпикатеральные эпителиальные клетки эритроцитарного эпителия EpCAM hi / CD49f не могут образовывать молочные железы после трансплантации в жировые подушки мыши, тогда как EpcAM lo / CD49f hi базальные эпителиальные клетки молочной железы образуют молочные железы после трансплантации. Приобретение EVM / экзосомы, полученных из NAMEC, EpcAM hi / CD49f lo, эпителиальные клетки просвета молочной железы позволяют им генерировать молочные железы после трансплантации в жировые подушки. EVs / экзосомы, полученные из стволовых эпителиальных клеток молочной железы, переносят способность образования молочной железы к EpCAM hi / CD49f ломовым эпителиальным клеткам молочной железы.

Introduction

Экзосомы могут опосредовать клеточную связь путем переноса мембранных и цитозольных белков, липидов и РНК между клетками 1 . Было показано, что опосредованная экзосомами связь связана со многими физиологическими и патологическими процессами ( т. Е. С представлением антигена, развитием толерантности 2 и прогрессированием опухоли 3 ). Экзосомы часто имеют содержание, сходное с содержимым исходных клеток, высвобождающих их. Таким образом, экзосомы могут переносить определенные клеточные свойства из исходных клеток и переносить эти свойства на клетки, поглощающие их 4 .

Экзосомы представляют собой двухслойные мембранные везикулы от 50 до 150 нм и представляют собой специфические маркеры ( например, CD9, CD81, CD63, HSP70, Alix и TSG101). Таким образом, экзосомы должны характеризоваться различными методами для разных аспектов. Прозрачная электронная микроскопия может быть использована для визуализации мембранных везикулТаких как экзосомы 4 , 5 . Анализ Nanoparticle tracking (NTA) и динамический анализ рассеяния света (DLS) используются для измерения размера и количества очищенных экзосом 4 . Содержание липидной мембраны в экзосомах может быть проверено градиентом плотности. Экзосомальные маркеры, такие как CD9, CD81, CD63, HSP70, Alix и TSG101 6 , 7 , могут быть измерены с помощью Вестерн-блоттинга.

Базальные клетки молочной железы обладают способностью генерировать молочные железы при имплантации в жировые подушечки, тогда как просветные клетки не могут 8 , 9 , 10 . Таким образом, базальные клетки молочной железы также упоминаются как единицы репопуляции молочной железы. Используя модель базальных и просветных клеток молочной железы, можно исследовать способность EVs / экзосомы передавать характеристики клеток между различными популяциями клеток. Эта работаДемонстрирует способ передачи железистообразующей способности из базальных эпителиальных клеток молочной железы в просветные эпителиальные клетки молочной железы с использованием EVs / экзосом, полученных из базальных эпителиальных клеток молочной железы. Лицевые эпителиальные клетки молочной железы приобретали свойства базальных клеток после приема ЭВ / экзосомы, секретируемых из базальных клеток, и затем могут образовывать молочные железы 4 .

Protocol

Все исследования, связанные с животными, соответствовали протоколам, утвержденным Институциональным комитетом по уходу за животными. 1. Внеклеточное везикул / экзосомальная изоляция и валидация Культуральные эпителиальные базальные клетки молочной железы, NAMECs <s…

Representative Results

Поскольку было показано, что блокирование передачи сигналов PGE 2 / EP 4 инициирует высвобождение EV / экзосомы из базальноподобных стволовых клеток 4 молочной железы, эта работа представляет собой метод выделения индуцированных EVs / экзосом из кул?…

Discussion

Экзосомы часто несут характеристики клеток, которые их высвобождают, а количество высвобожденных экзосом может индуцироваться стимулами 4 . Культуральную среду клеток можно собирать и подвергать дифференциальному ультрацентрифугированию для сбора EV / экзосомы ( <strong class="…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддержана грантами Национальных научно-исследовательских институтов здравоохранения (05A1-CSPP16-014, HJL) и Министерства науки и технологий (MOST 103-2320-B-400-015-MY3, HJL).

Materials

MCDB 170  USBiological M2162
DMEM/F12 Thermo 1250062
Optima L-100K ultracentrifuge Beckman 393253
SW28 Ti Rotor Beckman 342204
SW41 Rotor Beckman 331306
NANOSIGHT LM10 Malvern NANOSIGHT LM10 for nanoparticle tracking analysis (NTA)
Optiprep  Sigma-Aldrich D1556 60% (w/v) solution of iodixanol in water (sterile).
CD81 antibody GeneTex GTX101766 1:1000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
CD9 antibody GeneTex GTX100912 1:1000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
CD63 antibody Abcam Ab59479 1:1000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
TSG101 antibody GeneTex GTX118736 1:1000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
GAPDH GeneTex GTX100118 1:6000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
CFSE (carboxyfluorescein succinimidyl diacetate ester) Thermo V12883
FACSCalibur BD Biosciences fluorescence cell analyzer
collagenase Type IV  Thermo 17104019
trypsin Thermo 27250018
 ITS Sigma-Aldrich I3146 a mixture of recombinant human insulin, human transferrin, and sodium selenite
accutase ebioscience 00-4555-56 a natural enzyme mixture with proteolytic and collagenolytic enzyme activity
dispase  STEMCELL 7913 5 mg/ml = 5 U/ml
anti-CD49f antibody Biolegend 313611 1:50
anti-EpCAM antibody Biolegend 118213 1:200
FACSAria BD Biosciences cell sorter
carmine alum Sigma-Aldrich C1022
human mammary epithelial cells (HMLE cells, NAMECs) gifts from Dr. Robert Weinberg
permount Thermo Fisher Scientific  SP15-500
sodium bicarbonate Zymeset  BSB101
EGF Peprotech AF-100-015
Hydrocoritisone Sigma-Aldrich SI-H0888
Insulin  Sigma-Aldrich SI-I9278
BPE (bovine pituitary extract) Hammod Cell Tech  1078-NZ
GW627368X  Cayman 10009162
15-cm culture dish Falcon  353025
table-top centrifuge Eppendrof  Centrifuge 3415R
ultracentrifuge tube Beckman 344058
PBS (Phosphate-buffered saline)  Corning 46-013-CM
BCA Protein Assay Thermo Fisher Scientific  23228
Transmission Electron Microscopy Hitachi HT7700
gelatin  STEMCELL 7903
10-cm culture dish Falcon  353003
6-well culture dish Corning 3516
female C57BL/6 mice NLAC (National Laboratory Animal Center
FBS (Fetal Bovine Serum) BioWest  S01520
gentamycin Thermo Fisher Scientific  15710072
Pen/Strep Corning 30-002-Cl
DNase I 5PRIMER 2500120
isofluorane  Halocarbon NPC12164-002-25
formaldehyde MACRON H121-08
EtOH (Ethanol) J.T. Baker 800605
glacial acetic acid Panreac 131008.1611
aluminum potassium sulfate Sigma-Aldrich 12625
Xylene  Leica 3803665
0.22 μm membranes Merck Millipore Millex-GP
AUTOCLIP Wound Clips, 9 mm BD Biosciences 427631
AUTOCLIP Wound Clip Applier BD Biosciences 427630
CellMask™ Deep Red Thermo Fisher Scientific  C10046 plasma membrane stain

Riferimenti

  1. Simons, M., Raposo, G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol. 21 (4), 575-581 (2009).
  2. Théry, C., Ostrowski, M., Segura, E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 9 (8), 581-593 (2009).
  3. Boelens, M., et al. Exosome Transfer from Stromal to Breast Cancer Cells Regulates Therapy Resistance Pathways. Cell. 159 (3), 499-507 (2014).
  4. Lin, M. C., et al. PGE2 /EP4 Signaling Controls the Transfer of the Mammary Stem Cell State by Lipid Rafts in Extracellular Vesicles. Stem Cells. , (2016).
  5. Théry, C., Amigorena, S., Raposo, G., Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. , (2006).
  6. György, B., et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 68 (16), 2667-2688 (2011).
  7. Olver, C., Vidal, M. Proteomic analysis of secreted exosomes. Subcell Biochem. 43, 99-131 (2007).
  8. Shackleton, M., et al. Generation of a functional mammary gland from a single stem cell. Nature. 439 (7072), 84-88 (2006).
  9. Prater, M. D., et al. Mammary stem cells have myoepithelial cell properties. Nat Cell Biol. 16 (10), 942-950 (2014).
  10. Stingl, J., et al. Purification and unique properties of mammary epithelial stem cells. Nature. 439 (7079), 993-997 (2006).
  11. Gardiner, C., Ferreira, Y. J., Dragovic, R. A., Redman, C. W., Sargent, I. L. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2, (2013).
  12. Shapiro, A. L., Viñuela, E., Maizel, J. V. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 28 (5), 815-820 (1967).
  13. Riches, A., Campbell, E., Borger, E., Powis, S. Regulation of exosome release from mammary epithelial and breast cancer cells – a new regulatory pathway. Eur J Cancer. 50 (5), 1025-1034 (2014).
  14. Witwer, K. W., et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2, (2013).
  15. van der Vlist, E. J., Nolte-‘t Hoen, E. N., Stoorvogel, W., Arkesteijn, G. J., Wauben, M. H. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc. 7 (7), 1311-1326 (2012).
  16. Kowal, J., et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 113 (8), E968-E977 (2016).
  17. Li, D., et al. ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science. 349 (6251), (2015).
  18. Outzen, H. C., Custer, R. P. Growth of human normal and neoplastic mammary tissues in the cleared mammary fat pad of the nude mouse. J Natl Cancer Inst. 55 (6), 1461-1466 (1975).
  19. Sheffield, L. G., Welsch, C. W. Transplantation of human breast epithelia to mammary-gland-free fat-pads of athymic nude mice: influence of mammotrophic hormones on growth of breast epithelia. Int J Cancer. 41 (5), 713-719 (1988).

Play Video

Citazione di questo articolo
Lin, M., Chen, S., He, P., Luo, W., Li, H. Transfer of Mammary Gland-forming Ability Between Mammary Basal Epithelial Cells and Mammary Luminal Cells via Extracellular Vesicles/Exosomes. J. Vis. Exp. (124), e55736, doi:10.3791/55736 (2017).

View Video