Summary

Expressão transitória e Celular Localização de proteínas recombinantes em células de cultura de insectos

Published: April 20, 2017
doi:

Summary

sistemas de expressão em células de insecto Nonlytic são pouco utilizados para a produção, o tráfico celular / localização, e a análise funcional da proteína recombinante. Aqui, nós descrevemos métodos para gerar vectores de express e subsequente expressão da proteína transiente em linhas de células de lepidópteros disponíveis comercialmente. A co-localizao de aquaporinas de Bemisia tabaci com proteínas marcadoras fluorescentes subcelulares também é apresentada.

Abstract

sistemas de expressão de proteínas heterólogas são utilizados para a produção de proteínas recombinantes, a interpretação de tráfico celular / localização, e a determinação da função bioquímica de proteínas ao nível sub-organismos. Embora os sistemas de baculovírus de expressão são cada vez mais utilizados para a produção de proteína em numerosos biotecnológica, farmacêutica e aplicações industriais, sistemas nonlytic que não envolvem infecção viral tem benefícios claros, mas muitas vezes são esquecidos e subutilizados. Aqui, descrevemos um método para a geração de vectores de expressão nonlytic e a expressão da proteína recombinante transiente. Este protocolo permite a localização celular eficiente de proteínas recombinantes e pode ser utilizado para discernir rapidamente proteína tráfico dentro da célula. Mostramos a expressão de quatro proteínas recombinantes em uma linha celular de insecto disponível comercialmente, incluindo duas proteínas aquaporina do Bemisia tabaci insectos, bemcomo proteínas marcadoras subcelulares específicos para a membrana plasmática da célula e para os lisossomas intracelulares. Todas as proteínas recombinantes foram produzidas como quimeras com marcadores de proteínas fluorescentes nas suas extremidades carboxilo, que permite a detecção directa das proteínas recombinantes. A dupla transfecção das células com plasmeos albergando construes para os genes de interesse e um marcador subcelular conhecido permite imagens de células vivas e melhorada validação de localização da proteína celular.

Introduction

A produção de proteínas recombinantes, utilizando sistemas de expressão de células de insecto oferece numerosos benefícios para o estudo de proteínas eucarióticas. Ou seja, as células de insectos possuir modificações semelhantes pós-tradução, processamento, e os mecanismos de triagem como os presentes em células de mamíferos, o que é vantajoso para a produção de proteínas correctamente dobradas 1, 2, 3. Sistemas de células de insectos também tipicamente requerem menos recursos e menos tempo e esforço para manutenção de linhas celulares de mamíferos 4, 5. O sistema de expressão de baculovírus é um tal sistema baseado em células de insecto que é agora amplamente utilizados em muitas disciplinas, incluindo a produção de proteínas recombinantes para caracterização da proteína e terapêutica, a apresentação imunogénica de peptídeos estranhos e proteínas virais para produção de vacinas, a síntese de múltiplas -proteína complexos, A produção de proteínas glicosiladas, etc. 1, 2, 4, 6. Existem, no entanto, situações em que a expressão de baculovírus pode não ser aplicável 3, 7, e a utilização de sistemas de expressão de insectos e nonlytic transientes podem ser mais apropriados. Especificamente, a expressão de células de insecto transiente oferece a possibilidade para a rápida síntese de proteína recombinante, requer menos desenvolvimento e manutenção, não envolve a lise celular viral-impostas, e fornece um meio para melhor estudar o tráfico celular durante a síntese 7, 8, 9, proteína, 10.

Este protocolo descreve a rápida geração de vectores de expressão utilizando duas etapas de PCR de extensão de sobreposição (OE-PCR) <sup classe = "refex"> 11 e o padrão de clonagem de ADN de plasmídeo em Escherichia coli. Os plasmídeos são usados ​​para transfectar células de duplo de insecto em cultura disponíveis comercialmente e para produzir proteas representativas. O protocolo descreve a produção e utilização de duas proteínas marcadoras subcelular fluorescentemente marcadas diferentes e demonstra uma co-localização com duas proteínas aquaporina do Bemisia tabaci inseto. O protocolo seguinte fornece a metodologia básica para OE-PCR, a manutenção de células de insectos e de transfecção, e a microscopia de fluorescência para a localização celular de proteínas alvo.

Protocol

1. OE-PCR para a construção de plasmídeos de expressão Nota: Ver Tabela 1 para todos os iniciadores utilizados na OE-PCR. A utilização de uma polimerase de DNA de alta-fidelidade é recomendada para todas as amplificações. No entanto, porque estas enzimas frequentemente não deixe um 3' , é necessário realizar uma breve, a incubação não-amplificação com uma polimerase de ADN de Taq a 'um-cauda' produtos do PCR antes da clonagem-los em uma expressão …

Representative Results

OE-PCR OE-PCR permite a síntese de produtos de ADN quiméricas que, uma vez inserida num vector de expressão, para permitir a produção de proteínas quiméricas recombinantes correspondentes a qualquer gene de teste de interesse e proteína marcador fluorescente. A Figura 1 representa um esquema geral para a produção de vectores de expressão contendo PIB B. sequências de codificação (BtDrip1 e …

Discussion

Sistemas de expressão de proteínas heterólogas são ferramentas importantes para a produção de proteínas recombinantes utilizadas em numerosas aplicações a jusante 4. Escolhendo a partir de diversos sistemas de expressão disponíveis depende do objectivo final para a proteína de interesse. Vários sistemas de expressão em células de insecto estão disponíveis que oferecem alternativas flexíveis para sistemas de expressão de células procariotas e eucariotas 5…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Agradecemos Lynn Forlow-Jech e Dannialle LeRoy para assistência técnica. Este trabalho foi apoiado por um financiamento de base CRIS a USDA ARS, Programa Nacional 304 – Crop Protection and Quarantine [Project # 2020-22620-022-00D] para JAF e JJH A menção de nomes comerciais ou produtos comerciais neste artigo é apenas para o propósito de fornecer informações específicas e não implica recomendação ou endosso pelo Departamento de Agricultura dos EUA. O USDA é um fornecedor de oportunidades iguais e empregador.

Materials

KOD DNA Polymerase EMD Millipore 71085-3 High-fidelity DNA polymerase used for PCR amplification of overlap extension PCR products
ExTaq DNA Polymerase TaKaRa-Clontech RR001B DNA polymerase used for A-tailing of PCR products
EconoTaq PLUS GREEN 2x DNA Polymerase Master Mix Lucigen 30033-1 DNA polymerase used for bacterial colony PCR
Biometra TProfessional Gradient Thermocycler Biometra/LABRepCo 070-851
Agarose LE Benchmark Scientific A1705
SYBR Safe DNA Gel Stain ThermoFisher S33102
Montage DNA Gel Extraction Kit EMD Millipore LSKGEL050
pIB/V5-His TOPO TA Expression Kit ThermoFisher K89020 Contains components needed to clone overlap extension PCR products, including linearized and topoisomerase I-activated pIB/V5-His-TOPO vector, One Shot TOP10 chemically competent E. coli, and salt solution.
QIAprep Spin MiniPrep Kit Qiagen 27104
QIAcube Robotic Workstation Qiagen 9001292
Purifier Vertical Clean Bench Labconco 3970401
Tni cultured insect cell Line Allele Biotech ABP-CEL-10005
Sf9 cultured insect cell Line Allele Biotech ABP-CEL-10002
Serum-Free Insect Culture Medium Allele Biotech ABP-MED-10002
TNM-FH Insect Culture Medium Allele Biotech ABP-MED-10001
IPL-41 Insect Medium ThermoFisher 11405081
Cellfectin II Transfection Reagent ThermoFisher 10362100
16 cm Disposable Cell Scrapers Sarstedt 83.1832 Cell scrapers with two-position blade
25 cm2 (T25) Tissue Culture Flasks with Vent Filter Caps Life Science Products CT-229331
Transfer Pipets Fisher 1371120
Sterile, 50 mL Bio-Reaction Tubes Life Science Products CT-229475
PipetteBoy VWR 14222-180
5 mL Serological Pipettes Sarstedt 86.1253.001
0.5 mL Flat-Cap PCR Tubes Fisher 14230200
Polypropylene Biohazard Autoclave Bags Fisher 01828C
35 mm #1.5 Glass Bottom Dishes Matsunami Glass D35-14-1.5-U 35 mm dish diameter, 14 mm glass diameter, 1.5 mm glass thickness, uncoated
Incubator, Model 1510E VWR 35823-961
Countess II FL Cell Counter ThermoFisher AMQAF1000
Countess Cell Counting Chamber Slides with 0.4% Trypan Blue Reagent ThermoFisher C10228
Fluoview FV10i-LIV Laser Scanning Confocal Microscope Olympus FV10i-LIV
HsPLA2/pCS6 plasmid DNA transOMIC Technologies TCH1303
pmCherry Vector Clontech 632522
NucBlue Live ReadyProbes Reagent (Hoechst 33342) ThermoFisher R37605

Riferimenti

  1. Kost, T. A., et al. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23 (5), 567-575 (2005).
  2. van Oers, M. M., et al. Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J. Gen. Virol. 96 (1), 6-23 (2015).
  3. Contreras-Gòmez, A., et al. Protein production using the baculovirus-insect cell expression system. Biotechnol. Progr. 30 (1), 1-18 (2014).
  4. Hunt, I. From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expres. Purif. 40 (1), 1-22 (2005).
  5. Kollewe, C., Vilcinskas, A. Production of recombinant proteins in insect cells. Am. J. Biochem. Biotechnol. 9 (3), 255-271 (2013).
  6. Altmann, F., Berger, E. G., Clausen, H., Cummings, R. D., et al. Insect cells as hosts for the expression of recombinant glycoproteins. Glycotechnology. , 29-43 (1999).
  7. Shen, X., et al. A simple plasmid-based transient gene expression method using High Five cells. J. Biotechnol. 216, 67-75 (2015).
  8. Chen, H., et al. Rapid screening of membrane protein expression in transiently transfected insect cells. Protein Expres. Purif. 88 (1), 134-142 (2013).
  9. Shen, X., et al. Virus-free transient protein production in Sf9 cells. J. Biotechnol. 171, 61-70 (2014).
  10. Loomis, K. H., et al. InsectDirect System: rapid, high-level protein expression and purification from insect cells. J. Struct. Funct. Genomics. 6 (2), 189-194 (2005).
  11. Wurch, T., et al. A modified overlap extension PCR method to create chimeric genes in the absence of restriction enzymes. Biotechnol. Tech. 12 (9), 653-657 (1998).
  12. Woodman, M. E. Direct PCR of intact bacteria (colony PCR). Curr. Protoc. Microbiol. 9 (3), 1-6 (2008).
  13. Mathew, L. G., et al. Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci. Insect Biochem. Mol. Biol. 41 (3), 178-190 (2011).
  14. Van Ekert, E., et al. Molecular and functional characterization of Bemisia tabaci aquaporins reveals the water channel diversity of hemipteran insects. Insect Biochem. Mol. Biol. 77, 39-51 (2016).
  15. Hull, J. J., Brent, C. S. Identification and characterization of a sex peptide receptor-like transcript from the western tarnished plant bug Lygus hesperus. Insect Mol. Biol. 23 (3), 301-319 (2014).
  16. Maroniche, G. A., et al. Development of a novel set of Gateway-compatible vectors for live imaging in insect cells. Insect Mol. Biol. 20 (5), 675-685 (2011).
  17. Hull, J. J., et al. Identification of the western tarnished plant but (Lygus hesperus) olfactory co-receptor ORCO: Expression profile and confirmation of atypical membrane topology. Arch. Insect Biochem. 81 (4), 179-198 (2012).
  18. Lee, J. M., et al. Re-evaluation of the PBAN receptor molecule: Characterization of PBANR variants expressed in the pheromone glands of moths. Front. Endocrinol. 3 (6), 1-12 (2012).
  19. Fabrick, J. A., et al. Molecular and functional characterization of multiple aquaporin water channel proteins from the western tarnished plant bug, Lygus hesperus. Insect Biochem. Mol. Biol. 45, 125-140 (2014).
  20. Lu, M., et al. A baculovirus (Bombyx mori nuclear polyhedrosis virus) repeat element functions as a powerful constitutive enhancer in transfected insect cells. J. Biol. Chem. 272, 30724-30728 (1997).
  21. Ren, L., et al. Comparative analysis of the activity of two promoters in insect cells. African J. Biotechnol. 10, 8930-8941 (2011).
  22. Snapp, E. L. Fluorescent proteins: a cell biologist’s user guide. Trends Cell Biol. 19, 649-655 (2009).
  23. Kohnhorst, C. L., et al. Subcellular functions of proteins under fluorescence single-cell microscopy. Biochim. Biophys. Acta. 1864, 77-84 (2016).
  24. Zinchuk, V., Grossenbacher-Zinchuk, O. Recent advances in quantitative colocalization analysis: focus on neuroscience. Prog. Histochem. Cytochem. 44, 125-172 (2009).
  25. Shaner, N. C., et al. A guide to choosing fluorescent proteins. Nat. Methods. 2 (12), 905-909 (2005).
  26. Chalfie, M., et al. Green fluorescent protein as a marker for gene expression. Science. 263 (5148), 802-805 (1994).
  27. Shaner, N. C., et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotech. 22 (12), 1567-1572 (2004).
check_url/it/55756?article_type=t

Play Video

Citazione di questo articolo
Fabrick, J. A., Hull, J. J. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells. J. Vis. Exp. (122), e55756, doi:10.3791/55756 (2017).

View Video