Summary

Кратковременная экспрессия и клеточная локализация рекомбинантных белков в культивируемых клетках насекомых

Published: April 20, 2017
doi:

Summary

Nonlytic системы экспрессии клеток насекомых недостаточно для производства, торговли сотовой / локализации, а также рекомбинантного белка функционального анализа. Здесь мы описываем методы для генерации векторов экспрессии и последующей кратковременной экспрессию белка в коммерчески доступных чешуекрылых клеточных линиях. Совместно локализация Bemisia tabaci аквапоринов с субклеточных флуоресцирующих белков – маркеров также представлены.

Abstract

Гетерологичных системах экспрессии белка используются для получения рекомбинантных белков, интерпретация клеточного оборота / локализации, а также определение биохимической функции белков в суб-организменном уровне. Хотя выражение бакуловирусных системы все чаще используются для производства белка в многочисленных биотехнологическом, фармацевтическом и промышленных применениях, nonlytic систем, которые не связаны с вирусной инфекцией имеют очевидные преимущества, но часто упускаются из вида и недостаточно. Здесь мы опишем способ генерации nonlytic векторов экспрессии и переходную экспрессии рекомбинантного белка. Этот протокол позволяет эффективно клеточной локализации рекомбинантных белков и может быть использован для быстрого перемещения белков различить внутри клетки. Покажет экспрессию четыре рекомбинантных белков в коммерчески доступной линии клеток насекомых, в том числе двух аквапориных белков из насекомых Bemisia tabaci, а такжев субклеточных маркерных белков, специфичных для плазматической мембраны клетки и внутриклеточные лизосомы. Все рекомбинантные белки получали в виде химер с флуоресцентными маркерами белка в их карбоксильных концах, что позволяет для прямого обнаружения рекомбинантных белков. Двойная трансфекция клеток плазмид, несущие конструкции для генов, представляющего интереса и известных субклеточных маркеров позволяет клетки живого изображения и улучшенной проверке локализации клеточного белка.

Introduction

Получение рекомбинантных белков с использованием насекомыми системы экспрессии клеток предлагает многочисленные преимущества для изучения эукариотических белков. А именно, клетки насекомых обладают сходными посттрансляционными модификациями, обработку и сортировки механизмов , как присутствующие в клетках млекопитающих, что является предпочтительным для получения правильно свернутых белков 1, 2, 3. Системы клеток насекомых , как правило , также требуют меньше ресурсов и меньше времени и усилий для поддержания чем клеточных линий млекопитающих 4, 5. Система экспрессии бакуловируса является одним из таких насекомых клеточной системы на основе, которая в настоящее время широко используется во многих областях, в том числе получения рекомбинантных белков для белка характеристик и терапевтических средств, иммуногенной презентации чужеродных пептидов и вирусных белков для производства вакцин, синтеза мульти -protein комплексы, Производство гликозилированных белков и т.д.. 1, 2, 4, 6. Есть, однако, ситуации , в которых бакуловирус выражение не может быть применимо 3, 7, а также использование nonlytic и переходных систем экспрессии насекомых может быть более подходящим. В частности, выражение переходных клеток насекомых дает возможность для быстрого синтеза рекомбинантного белка, требует меньше усилий и техническое обслуживания, не включает в себя вирусный взимаемые лизис клеток, а также предоставляют средства для лучшего изучения клеточной торговли людей во время синтеза белка 7, 8, 9, 10.

Этот протокол описывает быстрое формирование векторов экспрессии, используя два этапа расширения перекрытия ПЦР (ОЕ-ПЦР) <suр класс = «Xref»> 11 и стандартное клонирование ДНК плазмиды в кишечной палочке. Плазмиды используются для двойной трансфекции коммерчески доступные культивируемые клеток насекомых, и для получения репрезентативных белков. Протокол описывает производство и использование двух различных флуоресцентно меченных белков субклеточных маркеров и демонстрирует колокализацию с двумя аквапорин белков из насекомых Bemisia tabaci. Следующий протокол обеспечивает базовую методологию для OE-PCR, насекомых поддержания клеток и трансфекции, и флуоресцентной микроскопии для клеточной локализации белков-мишеней.

Protocol

1. OE-PCR для строительства экспрессирующих плазмид Примечание: В таблице 1 для всех праймеров , используемых в OE-PCR. Использование ДНК-полимеразы высокой точности рекомендуется для всех усилений. Однако, поскольку эти ферменты часто не оставляют 3' А, необходимо вы…

Representative Results

ОЕ-ПЦР ЫЙ-ПЦР позволяет для синтеза химерных продуктов ДНК, которые, как только вставленного в вектор экспрессии, позволяют для производства рекомбинантных химерных белков, соответствующих какого-либо тест интересующего гена и маркер?…

Discussion

Гетерологичные системы экспрессии белка являются важными инструментами для получения рекомбинантных белков , используемых во многих последующих применениях 4. Выбор из различных систем экспрессии, доступных в зависимости от конечной цели для интересующего белка. Нескол…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Мы благодарим Линн Forlow-Jech и Данниол Лерой для оказания технической помощи. Эта работа была поддержана базой ЦИРИ финансирования для USDA ARS, Национальная программа 304 – Средства защиты растений и карантина [Проект № 2020-22620-022-00D] к JAF и JJH Упоминание торговых наименований или коммерческих продуктов в этой статье является исключительно для целей предоставления конкретной информации и не подразумевает рекомендацию или одобрение со стороны Министерства сельского хозяйства США. Министерство сельского хозяйства США равные возможности и работодателем.

Materials

KOD DNA Polymerase EMD Millipore 71085-3 High-fidelity DNA polymerase used for PCR amplification of overlap extension PCR products
ExTaq DNA Polymerase TaKaRa-Clontech RR001B DNA polymerase used for A-tailing of PCR products
EconoTaq PLUS GREEN 2x DNA Polymerase Master Mix Lucigen 30033-1 DNA polymerase used for bacterial colony PCR
Biometra TProfessional Gradient Thermocycler Biometra/LABRepCo 070-851
Agarose LE Benchmark Scientific A1705
SYBR Safe DNA Gel Stain ThermoFisher S33102
Montage DNA Gel Extraction Kit EMD Millipore LSKGEL050
pIB/V5-His TOPO TA Expression Kit ThermoFisher K89020 Contains components needed to clone overlap extension PCR products, including linearized and topoisomerase I-activated pIB/V5-His-TOPO vector, One Shot TOP10 chemically competent E. coli, and salt solution.
QIAprep Spin MiniPrep Kit Qiagen 27104
QIAcube Robotic Workstation Qiagen 9001292
Purifier Vertical Clean Bench Labconco 3970401
Tni cultured insect cell Line Allele Biotech ABP-CEL-10005
Sf9 cultured insect cell Line Allele Biotech ABP-CEL-10002
Serum-Free Insect Culture Medium Allele Biotech ABP-MED-10002
TNM-FH Insect Culture Medium Allele Biotech ABP-MED-10001
IPL-41 Insect Medium ThermoFisher 11405081
Cellfectin II Transfection Reagent ThermoFisher 10362100
16 cm Disposable Cell Scrapers Sarstedt 83.1832 Cell scrapers with two-position blade
25 cm2 (T25) Tissue Culture Flasks with Vent Filter Caps Life Science Products CT-229331
Transfer Pipets Fisher 1371120
Sterile, 50 mL Bio-Reaction Tubes Life Science Products CT-229475
PipetteBoy VWR 14222-180
5 mL Serological Pipettes Sarstedt 86.1253.001
0.5 mL Flat-Cap PCR Tubes Fisher 14230200
Polypropylene Biohazard Autoclave Bags Fisher 01828C
35 mm #1.5 Glass Bottom Dishes Matsunami Glass D35-14-1.5-U 35 mm dish diameter, 14 mm glass diameter, 1.5 mm glass thickness, uncoated
Incubator, Model 1510E VWR 35823-961
Countess II FL Cell Counter ThermoFisher AMQAF1000
Countess Cell Counting Chamber Slides with 0.4% Trypan Blue Reagent ThermoFisher C10228
Fluoview FV10i-LIV Laser Scanning Confocal Microscope Olympus FV10i-LIV
HsPLA2/pCS6 plasmid DNA transOMIC Technologies TCH1303
pmCherry Vector Clontech 632522
NucBlue Live ReadyProbes Reagent (Hoechst 33342) ThermoFisher R37605

Riferimenti

  1. Kost, T. A., et al. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23 (5), 567-575 (2005).
  2. van Oers, M. M., et al. Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J. Gen. Virol. 96 (1), 6-23 (2015).
  3. Contreras-Gòmez, A., et al. Protein production using the baculovirus-insect cell expression system. Biotechnol. Progr. 30 (1), 1-18 (2014).
  4. Hunt, I. From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expres. Purif. 40 (1), 1-22 (2005).
  5. Kollewe, C., Vilcinskas, A. Production of recombinant proteins in insect cells. Am. J. Biochem. Biotechnol. 9 (3), 255-271 (2013).
  6. Altmann, F., Berger, E. G., Clausen, H., Cummings, R. D., et al. Insect cells as hosts for the expression of recombinant glycoproteins. Glycotechnology. , 29-43 (1999).
  7. Shen, X., et al. A simple plasmid-based transient gene expression method using High Five cells. J. Biotechnol. 216, 67-75 (2015).
  8. Chen, H., et al. Rapid screening of membrane protein expression in transiently transfected insect cells. Protein Expres. Purif. 88 (1), 134-142 (2013).
  9. Shen, X., et al. Virus-free transient protein production in Sf9 cells. J. Biotechnol. 171, 61-70 (2014).
  10. Loomis, K. H., et al. InsectDirect System: rapid, high-level protein expression and purification from insect cells. J. Struct. Funct. Genomics. 6 (2), 189-194 (2005).
  11. Wurch, T., et al. A modified overlap extension PCR method to create chimeric genes in the absence of restriction enzymes. Biotechnol. Tech. 12 (9), 653-657 (1998).
  12. Woodman, M. E. Direct PCR of intact bacteria (colony PCR). Curr. Protoc. Microbiol. 9 (3), 1-6 (2008).
  13. Mathew, L. G., et al. Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci. Insect Biochem. Mol. Biol. 41 (3), 178-190 (2011).
  14. Van Ekert, E., et al. Molecular and functional characterization of Bemisia tabaci aquaporins reveals the water channel diversity of hemipteran insects. Insect Biochem. Mol. Biol. 77, 39-51 (2016).
  15. Hull, J. J., Brent, C. S. Identification and characterization of a sex peptide receptor-like transcript from the western tarnished plant bug Lygus hesperus. Insect Mol. Biol. 23 (3), 301-319 (2014).
  16. Maroniche, G. A., et al. Development of a novel set of Gateway-compatible vectors for live imaging in insect cells. Insect Mol. Biol. 20 (5), 675-685 (2011).
  17. Hull, J. J., et al. Identification of the western tarnished plant but (Lygus hesperus) olfactory co-receptor ORCO: Expression profile and confirmation of atypical membrane topology. Arch. Insect Biochem. 81 (4), 179-198 (2012).
  18. Lee, J. M., et al. Re-evaluation of the PBAN receptor molecule: Characterization of PBANR variants expressed in the pheromone glands of moths. Front. Endocrinol. 3 (6), 1-12 (2012).
  19. Fabrick, J. A., et al. Molecular and functional characterization of multiple aquaporin water channel proteins from the western tarnished plant bug, Lygus hesperus. Insect Biochem. Mol. Biol. 45, 125-140 (2014).
  20. Lu, M., et al. A baculovirus (Bombyx mori nuclear polyhedrosis virus) repeat element functions as a powerful constitutive enhancer in transfected insect cells. J. Biol. Chem. 272, 30724-30728 (1997).
  21. Ren, L., et al. Comparative analysis of the activity of two promoters in insect cells. African J. Biotechnol. 10, 8930-8941 (2011).
  22. Snapp, E. L. Fluorescent proteins: a cell biologist’s user guide. Trends Cell Biol. 19, 649-655 (2009).
  23. Kohnhorst, C. L., et al. Subcellular functions of proteins under fluorescence single-cell microscopy. Biochim. Biophys. Acta. 1864, 77-84 (2016).
  24. Zinchuk, V., Grossenbacher-Zinchuk, O. Recent advances in quantitative colocalization analysis: focus on neuroscience. Prog. Histochem. Cytochem. 44, 125-172 (2009).
  25. Shaner, N. C., et al. A guide to choosing fluorescent proteins. Nat. Methods. 2 (12), 905-909 (2005).
  26. Chalfie, M., et al. Green fluorescent protein as a marker for gene expression. Science. 263 (5148), 802-805 (1994).
  27. Shaner, N. C., et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotech. 22 (12), 1567-1572 (2004).
check_url/it/55756?article_type=t

Play Video

Citazione di questo articolo
Fabrick, J. A., Hull, J. J. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells. J. Vis. Exp. (122), e55756, doi:10.3791/55756 (2017).

View Video