Summary

拉伸压缩模式下的超声疲劳试验

Published: March 07, 2018
doi:

Summary

一种在高超高循环区域轴向拉压加载模式下的超声疲劳试验协议。

Abstract

超声疲劳试验是研究超高循环区域疲劳性能的几种方法之一。该方法的基础是将试样暴露在共振频率接近20赫的纵向振动上。使用此方法, 可以大大减少测试所需的时间, 与通常工作在200赫兹以下频率的常规测试设备相比。它也被用来模拟在运行中的材料加载在高速条件下, 如那些由喷气引擎或汽车涡轮泵的组件经验。由于极高的变形速率可能会对试验结果产生显著影响, 因此必须在高、超高循环区内进行操作。试样的形状和尺寸必须经过仔细的选择和计算, 以满足超声系统的共振条件;因此, 不可能对任意形状的完整元件或试样进行测试。在每次试验前, 必须将试样与超声波系统的频率进行协调, 以补偿实际形状与理想的偏差。这是不可能的, 直到一个完全断裂的标本, 因为测试是自动终止后, 裂纹的启动和传播到一定的长度, 当系统的刚度改变足以转移系统的共振频率.本文介绍了在高频超声疲劳载荷作用下, 利用近20赫频率的机械共振来评价材料疲劳性能的过程。该协议包括对正确测试所需的所有步骤的详细描述, 包括试样设计、应力计算、与共振频率的协调、执行测试和最终的静态断裂。

Introduction

结构材料的疲劳损伤与工业化有着密切的联系, 主要是利用蒸汽发动机和蒸汽机车进行铁路运输, 其中大量的金属部件, 主要以铁为主, 已被使用并承受各种循环加载的类型。最早的一次测试是由阿尔伯特 (德国 1829)1在矿井提升机的焊接链上进行的。加载频率为每分钟10弯, 所记录的最大测试达到10万加载周期1。另一项重要工作是由威廉费尔贝恩在1864年进行的。在锻铁梁上进行了试验, 使用静态载荷, 通过杠杆提升, 然后下降造成振动。荷载作用下, 梁的加载应力幅度逐渐增大。在对各种荷载应力振幅进行了上千次循环后, 最终梁在大约5000加载周期的载荷振幅2/5 的极限抗拉强度的情况下失败。8月弗里德里希·维勒在 1860-18701中首次对结构材料的反复应力影响进行了全面系统的研究。对于这些测试, 他使用扭力, 弯曲和轴向加载模式。弗里德里希·维勒设计了许多独特的疲劳试验机, 但他们的缺点是低操作速度, 例如最快的旋转折弯机操作在 72 rpm (1.2 Hz), 因而实验程序的完成花费了12年1。在进行这些测试之后, 人们认为, 在达到材料承受 107周期的加载振幅后, 疲劳退化是微不足道的, 材料可以经受无限数量的加载周期。这一加载幅值被命名为 “疲劳极限”, 并成为多年工业设计的主要参数2,3

进一步开发新的工业机器, 需要更高的效率和成本节约, 必须提供更高的负载, 更高的运行速度, 更高的工期, 高可靠性和低维护要求的可能性。例如, 高速列车 Shinkanzen 的组件经过10年的运行后, 必须承受大约10个9循环, 主组件的故障可能会产生致命后果4。此外, 喷气引擎的部件通常运行在 1.2万 rpm, 涡轮鼓风机的组件往往超过 1.7万 rpm。这些高操作速度增加了在所谓的超高循环区域的疲劳寿命测试的要求, 并评估了材料的疲劳强度是否真的被认为是恒定的超过1000万个周期。在第一次试验超过了这种耐力后, 很明显, 即使在应用应力振幅低于疲劳极限的情况下, 疲劳失效也会发生, 在许多循环超过 107之后, 损伤和破坏机制可能与通常的5不同。

创建一个旨在调查超高循环区域的疲劳测试程序, 需要开发新的测试设备以强烈增加加载频率。1998年6月在巴黎举行了一次专题讨论会, 该研讨会的实验结果是由 Stanzl-Tschegg6和 Bathias7在20赫加载频率下获得的, 由里奇8使用1赫闭环伺服液压试验机, 并由戴维森8与1.5 赫磁 strictive 测试机4。从那时起, 许多解决方案被提出, 但仍然最常用的机器为这类测试是基于曼森的概念从1950年和使用频率接近20赫9。这些机器在应变率、周期数的确定精度和疲劳试验的时间 (1010周期达到大约6天) 之间表现出良好的平衡。其他设备能提供更高的装载频率, 象 Girald 使用的一个在 1959年-92 赫和菊在 1965年-199 赫;然而, 这些很少被使用, 因为它们造成极高的变形率, 而且, 由于测试只持续了几分钟, 预计周期计数的一个显著误差。影响疲劳试验的共振器件加载频率的另一个重要因素是试样的尺寸, 它与共振频率直接相关。所要求的加载频率越大, 试样越小。这就是为什么40赫以上的频率很少使用10的原因。

由于位移振幅通常限制在3和80µm 之间的间隔内, 所以超声波疲劳测试可以成功地应用于大多数金属材料, 尽管在高分子材料 (如 PMMA11 ) 的测试技术和此外, 还开发了复合材料12 。一般情况下, 超声波疲劳试验可以在轴向加载模式下执行: 拉伸压缩对称循环13,14, 张力-张力周期15, 三点弯曲15, 还有一些研究与系统的特别修改为扭力测试15,16和双轴弯曲17。这是不可能使用任意标本, 因为对于这种方法, 几何是严格的关系, 以达到共振频率的20赫。对于轴向载荷, 几种类型的试样已被常用, 通常有一个小时玻璃形状与规格长度直径从3到5毫米。对于三点弯曲, 薄板是常用的, 为其他方法设计了特殊类型的试样, 根据方法类型和测试条件。该方法设计用于评价高、超高循环区域的疲劳寿命, 这意味着在五十年代获得20赫负载, 100万个周期;因此, 这通常被认为是负荷周期的下限, 可以用合理的精度来研究, 关于周期确定的数量。每个试样必须通过改变试样的质量来与超声波喇叭协调, 以提供系统的正确共振频率: 带试样的超声波喇叭。

Protocol

注: 每个试样的几何必须根据所测材料的力学和物理特性进行选择和计算, 使其具有与超声波检测系统相同的共振频率。 1. 疲劳试验试样尺寸的测定 注意:标准的 “沙漏” 拉伸-压缩试样几何具有定义的主尺寸, 如图 1所示。维度d、 d、和r是用户定义的 (独立), 而l和l维度必须根据正确的…

Representative Results

疲劳试验结果包括加载应力、加载周期数和测试终止字符 (断开或耗尽) 可以在表 1中看到, 其中提供了50CrMo4 淬火和回火钢的疲劳寿命结果。对疲劳寿命试验结果最常见的解释是所谓的 s-N 地块 (s 应力, N-周期数), 也称为弗里德里希·维勒的剧情。疲劳寿命对施加载荷应力的依赖性在历史上给定的倒轴图中绘制, 其中独立值 (加载应力) 位于y轴上, 而相关值 …

Discussion

超声疲劳试验是允许在超高循环区进行结构材料测试的几种方法之一。然而, 在共振频率方面, 试样的形状和尺寸是非常有限的。例如, 在轴向加载模式下的薄板的测试一般是不可能的。此外, 大型试样的测试通常是不可能的, 因为测试机器没有提供这样的功率, 它需要设计一个特殊的超声波系统。

即使现代超声波发生器能够对超声波进行调制, 并成功地共振具有细微不同尺寸的…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了项目的支持: “Žilina 大学研究中心-2nd阶段”, 斯洛伐克共和国教育部、科学和体育部的 ITMS 313011D011, 斯洛伐克科学院, 赠款号: 1/0045/17、1/0951/17 和 1/0123/15 和斯洛伐克研究开发署, 批准号。APVV-16-0276。

Materials

Ultrasonic fatigue testing device Lasur 20 kHz, used for fatigue tests
Nyogel 783 Nye Lubricants Used as acoustic gel for connection of the parts of the ultrasonic system
Win 20k software Lasur Software for operation of the Lasur fatigue testing machine

Riferimenti

  1. Moore, H. F., Kommers, J. B. . The fatigue of metals. , 321 (1927).
  2. Nicholas, T. . High Cycle Fatigue: A Mechanics of Materials Perspective. , (2006).
  3. Schijve, J. . Fatigue of Structures and Materials. , (2008).
  4. Murakami, Y. . Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. , (2002).
  5. Trsko, L., Bokuvka, O., Novy, F., Guagliano, M. Effect of severe shot peening on ultra-high-cycle fatigue of a low-alloy steel. Mater. Design. 57, 103-113 (2014).
  6. Stanzl, T. Fracture mechanisms and fracture mechanics at ultrasonic frequencies. Fatigue. Fract. Eng. M. 22 (7), 567-579 (1999).
  7. Bathias, C. There is no infinite fatigue life in metallic materials. Fatigue. Fract. Eng. M. 22 (7), 559-565 (1999).
  8. Ritchie, R. O., et al. High-cycle fatigue of Ti-6Al-4V. Fatigue. Fract. Eng. M. 22 (7), 621-631 (1999).
  9. Bathias, C., Paris, P. C. . Gigacycle Fatigue in Mechanical Practice. , (2004).
  10. Bokuvka, O., et al. . Ultrasonic Fatigue of Materials at Low and High Frequency Loading. , (2015).
  11. Almaraz, G. M. D., et al. Ultrasonic Fatigue Testing on the Polymeric Material PMMA, Used in Odontology Applications. Procedia Structural Integrity. 3, 562-570 (2017).
  12. Flore, D., et al. Investigation of the high and very high cycle fatigue behaviour of continuous fibre reinforced plastics by conventional and ultrasonic fatigue testing. Compos. Sci. Technol. 141, 130-136 (2017).
  13. Trško, L., et al. Influence of Severe Shot Peening on the Surface State and Ultra-High-Cycle Fatigue Behavior of an AW 7075 Aluminum Alloy. J. Mater. Eng. Perform. 26 (6), 2784-2797 (2017).
  14. Mayer, H., et al. Cyclic torsion very high cycle fatigue of VDSiCr spring steel at different load ratios. Int. J. Fatigue. 70, 322-327 (2015).
  15. Bathias, C. Piezoelectric fatigue testing machines and devices. Int. J. Fatigue. 28 (11), 1438-1445 (2006).
  16. Mayer, H. Ultrasonic torsion and tension-compression fatigue testing: Measuring principles and investigations on 2024-T351 aluminium alloy. Int. J. Fatigue. 28 (11), 1446-1455 (2006).
  17. Brugger, C., Palin-Luc, T., Osmond, P., Blanc, M. A new ultrasonic fatigue testing device for biaxial bending in the gigacycle regime. Int. J. Fatigue. 100, Part 2, 619-626 (2017).
  18. Wagner, D., Cavalieri, F. J., Bathias, C., Ranc, N. Ultrasonic fatigue tests at high temperature on anaustenitic steel. J. Propul. Power. 1 (1), 29-35 (2012).
  19. Kohout, J., Vechet, S. A new function for fatigue curves characterization and its multiple merits. Int. J. Fatigue. 23 (2), 175-183 (2001).
check_url/it/57007?article_type=t

Play Video

Citazione di questo articolo
Trško, L., Nový, F., Bokůvka, O., Jambor, M. Ultrasonic Fatigue Testing in the Tension-Compression Mode. J. Vis. Exp. (133), e57007, doi:10.3791/57007 (2018).

View Video