Summary

生活家兎眼に新規光音響顕微鏡、光コヒーレンストモグラフィーのデュアル モダリティ網脈絡膜イメージング

Published: February 08, 2018
doi:

Summary

本稿では、新規のセットアップと光音響顕微鏡やウサギなどの大型動物の非侵襲的、ラベル無料網脈絡膜イメージング用光断層影像デュアル モダリティ装置の操作手順をについて説明します。

Abstract

音響眼球画像処理は、新たなイメージング技術音の波に光エネルギーを変換することによって眼の組織を視覚化できる非侵襲的、集中的な調査の下は、現在眼科です。ただし、ほとんどは、これまでの仕事は小さな眼球サイズによる臨床人間の翻訳のための課題がラットやマウスなどの小動物の目の後方のセグメントの画像に焦点を当てた報告。本稿では、新規光音響顕微鏡 (PAM) ウサギなどの大型動物の目の後部セグメント画像用光コヒーレンス断層法 (OCT) デュアル モダリティ システムをについて説明します。システム構成、システムの配置、動物の準備、およびin vivoウサギのイメージングの非侵襲的、ラベル無料網脈絡膜のデュアル モダリティ実験プロトコルの詳細します。PAM および OCT による網膜と脈絡膜の血管を含む、代表的な実験結果により、手法の有効性を実証する.この原稿は、ウサギの撮像結果の再現より大きい動物の光音響分光法眼を促進の実用的なガイドを提供します。

Introduction

最近数十年は、生体光音響イメージング1,2,3,4,5,6,7 のフィールドの爆発的な発展を目撃しています。 ,8。光の音へのエネルギー変換に基づく、新興の光音響イメージング縮尺が細胞内小器官、細胞、組織、器官から小動物全身に生体試料を可視化できるし、その解剖を明らかにすることができます、機能、分子、遺伝子、代謝情報1,2,9,1011,12。光音響イメージング細胞生物学13,14, 血管生物学15,16, 神経17,18 などのバイオ分野の範囲のユニークなアプリケーションを見つけた、腫瘍19,20,21,22、皮膚23、薬理24、および血液25,26。眼科、眼は、光音響応用イメージング科学者や臨床医から実質的な興味を集めている、現在アクティブな調査中です。

対照的に定期的に使用される眼撮像技術27(FA) 血管造影とインドシアニン グリーン造影 (ICGA) (蛍光のコントラストに基づく)、光干渉断層計 (OCT) など (光散乱コントラストに基づく)、派生 10 月血管造影 (赤い血球の反対の動きに基づく)、コントラスト メカニズムとして使用して光吸収イメージング音響眼。従来眼イメージング技術とは異なる、眼組織の28の病態生理学的状態に通常関連付けられている目の光吸収特性を研究するためのユニークなツールを提供します。までに、かなり優秀な作品は、光音響イメージング29,30,31,32,33,34,35、眼で行われています。 36,37, しかし、これらの研究はラット、マウス等の小動物の目の後方のセグメントに焦点を当てます。先駆的な研究はよく眼科で光音響イメージングの可能性を示すが、ラットおよびマウスの眼球サイズ以来技術の臨床的翻訳の方に行くには長い道のりはまだははるかに小さい (1-3 未満) より人間。かなり長距離超音波の伝搬、により画像大きく目の後方のセグメントの技術を使用する場合非常に信号強度と画質が苦しみます。

この目標に向かって私たちは最近非侵襲的、報告を使用して生きているウサギのラベル無料網脈絡膜イメージング統合光音響顕微鏡 (PAM) と周波数領域 10 月 (SD 10 月)38。システムは、優れたパフォーマンス、網膜と脈絡膜内在性吸収と眼組織の散乱コントラストに基づいてより大きい動物の目を可視化することができます。家兎における予備的な結果を示す PAM がレーザー照射線量を使用して個々 の網膜と脈絡膜血管を区別して非侵襲的 (~ 80 ニュージャージー州) アメリカ規格協会 (ANSI) 安全限度以下大幅 (160 ニュージャージー) 570 でnm39;OCT は明らかに強膜、脈絡膜、網膜の異なるレイヤーを解決できます。PAM を使用してより大きい動物の後部セグメント イメージングの非常に最初のデモンストレーションで、ウサギ (18.1 mm)40の眼球のサイズがの軸の長さのほぼ 80% であることを考慮した技術の臨床的翻訳の方の主要なステップがあります。人間 (23.9 mm)。

この作品ではデュアル モダリティ イメージング システム ・生活家兎における非侵襲的、ラベル無料網脈絡膜イメージング用実験プロトコルの詳細な説明を提供し、代表的な網膜を介してシステムのパフォーマンスを示すと脈絡膜の撮像結果。

Protocol

ウサギは、アメリカ合衆国農務省 (USDA) に種が覆われています。生物医学研究での使用は厳しい規制に従う必要があります。すべてウサギ実験を行なった ARVO (視覚と眼科学研究協会) ステートメントに従って眼科と視覚に関する研究における動物の使用のため、大学による研究所動物プロトコルの承認後委員会委員の使用、ミシガン大学 (プロトコル PRO00006486、PI ヤニス Paulus) 動物 (UCUCA)。…

Representative Results

デュアル モダリティ イメージング システムと実験的なプロトコルは、筆者らの研究室では 4 つのニュージーランド白ウサギを用いた正常にテストされています。次は、典型的な結果をいくつか紹介します。 パムと SD 10 月デュアル モダリティの画像処理システムの概略図を図 1に示します。次のモ?…

Discussion

高品質眼底画像はそのままで、通常の涙映画が欠かせません。不規則で劣化した涙膜が大幅イメージの質42に低下します。涙液膜の整合性を維持し、角膜の表在性点状表層角膜症を防ぐため、2 分に約非常に頻繁に目薬を使用して角膜を潤滑するが重要です。目の不透明度に関する問題がないか、細隙灯を使用し、フルオレセイン角膜の状態をチェックするストリップします…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

この作品は、国立眼研究所 4K12EY022299 の寛大なサポートによって支えられた (ワイエムピー)、戦いの視力国際網膜研究財団 FFS GIA16002 (ワイエムピー)、失明を防ぐための研究から無制限の部門レベルのサポートとミシガン大学眼科学および視覚科学。この作品を利用するコア センターで、ビジョン研究国立眼研究所から P30 EY007003 によって資金を供給します。

Materials

Dual-modality imaging system
OPO laser Ekspla (Vilnius, Lithuania) NT-242
Beam attenuator Thorlabs, Inc. (Newton, NJ, USA) AHWP10M-600
Motorized rotation stage Thorlabs, Inc. (Newton, NJ, USA) PRM1/MZ8
Motorized rotation stage controller Thorlabs, Inc. (Newton, NJ, USA) TDC001
Focusing lens Thorlabs, Inc. (Newton, NJ, USA) AC254-250-B
Pinhole Thorlabs, Inc. (Newton, NJ, USA) P50S
Collimating lens Thorlabs, Inc. (Newton, NJ, USA) AC127-030-B
Photodiode Thorlabs, Inc. (Newton, NJ, USA) PDA36A 
Laser shutter Vincent Associates Inc. (Toronto, Canada) LS6S2T0
Laser shutter driver Vincent Associates Inc. (Toronto, Canada) VCM-D1
Dichroic mirror Semrock, Inc. (Rochester, NY, USA) Di03-R785-t3-25×36
Scan lens Thorlabs, Inc. (Newton, NJ, USA) OCT-LK3-BB
Ophthalmic lens Thorlabs, Inc. (Newton, NJ, USA) AC080-010-B-ML
Ultrasonic transducer Optosonic Inc. (Arcadia, CA, USA) Custom
Amplifier L3 Narda-MITEQ (Hauppauge, NY, USA) AU-1647
Band-pass filter Mini-Circuits (Brooklyn, NY, USA) BLP-30+
Digitizer DynamicSignals LLC (Lockport, IL, USA) PX1500-4 
Synchronization electronics National Instruments Corporation (Austin, TX, USA) USB-6353
OCT module Thorlabs, Inc. (Newton, NJ, USA) Ganymede-II-HR
Dispersion compensation glass Thorlabs, Inc. (Newton, NJ, USA) LSM03DC
Illumination LED light Thorlabs, Inc. (Newton, NJ, USA) MCWHF2 
Power meter Thorlabs, Inc. (Newton, NJ, USA) S121C 
Power meter interface Thorlabs, Inc. (Newton, NJ, USA) PM100USB 
Height measurement tool  Thorlabs, Inc. (Newton, NJ, USA) BHM1
Fundus camera Topcon Corporation (Tokyo, Japan)  TRC 50EX
Matlab MathWorks (Natick, MA, USA) 2017a
Oscilloscope Teledyne LeCroy (Chestnut Ridge, NY, USA) WaveJet 354T
Animal experiment
Water-circulating blanket Stryker Corporation (Kalamazoo, MI, USA) TP-700
Ketamine hydrochloride injection Par pharmaceutical, Inc. (Woodcliff Lake, NJ, USA) NDC code 42023-115-10
Xylazine hydrochloride VetOne (Boise, ID, USA) NDC code 13985-704-10
Tropicamide ophthalmic Akorn Pharmaceuticals Inc. (Lake Forest, IL, USA) NDC code 17478-102-12
Phenylephrine hydrochloride ophthalmic Paragon BioTeck, Inc. (Portland, OR, USA) NDC code 42702-102-15
Eye lubricant Hub Pharmaceuticals LLC (Rancho Cucamonga, CA, USA) NDC code 17238-610-15
Eyewash Altaire Pharmaceuticals, Inc. (Aquebogue, NY, USA) NDC code 59390-175-18
Tetracaine hydrochloride ophthalmic solution Bausch & Lomb, Inc. (Rochester, NY, USA) NDC code 24208-920-64
Flurbiprofen sodium ophthalmic solution Bausch & Lomb, Inc. (Rochester, NY, USA) NDC code 24208-314-25
Neomycin and Polymyxin B Sulfates and Dexamethasone Ophthalmic Ointment Bausch & Lomb, Inc. (Rochester, NY, USA) NDC code 24208-795-35
Meloxicam injection Henry Schein Inc. (Queens, NY, USA) NDC code 11695-6925-1

Riferimenti

  1. Wang, L. V., Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 335 (6075), 1458-1462 (2012).
  2. Beard, P. Biomedical photoacoustic imaging. Interface Focus. , (2011).
  3. Taruttis, A., Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photonics. 9 (4), 219-227 (2015).
  4. Tian, C., Xie, Z., Fabiilli, M. L., Wang, X. Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver. Opt Lett. 40 (10), 2253-2256 (2015).
  5. Tian, C., et al. Dual-pulse nonlinear photoacoustic technique: a practical investigation. Biomed Opt Express. 6 (8), 2923-2933 (2015).
  6. Tian, C., et al. Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer. IEEE Sens J. 16 (23), 8381-8388 (2016).
  7. Kim, K. H., et al. Air-coupled ultrasound detection using capillary-based optical ring resonators. Sci Rep. 7, 1 (2017).
  8. Feng, T., et al. Bone assessment via thermal photo-acoustic measurements. Opt Lett. 40 (8), 1721-1724 (2015).
  9. Chen, S. -. L., Xie, Z., Carson, P. L., Wang, X., Guo, L. J. In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy. Opt Lett. 36 (20), 4017-4019 (2011).
  10. Dean-Ben, X., Fehm, T. F., Razansky, D. Universal Hand-held Three-dimensional Optoacoustic Imaging Probe for Deep Tissue Human Angiography and Functional Preclinical Studies in Real Time. J Vis Exp. (93), e51864 (2014).
  11. Galanzha, E. I., et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol. 4 (12), 855-860 (2009).
  12. Xiang, L., Wang, B., Ji, L., Jiang, H. 4-D photoacoustic tomography. Sci Rep. 3, (2013).
  13. Tian, C., et al. Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells. Adv Sci. 3 (12), (2016).
  14. Zhou, F., Wu, S., Yuan, Y., Chen, W. R., Xing, D. Mitochondria-Targeting Photoacoustic Therapy Using Single-Walled Carbon Nanotubes. Small. 8 (10), 1543-1550 (2012).
  15. Maslov, K., Zhang, H. F., Hu, S., Wang, L. V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett. 33 (9), 929-931 (2008).
  16. Hu, S., Maslov, K., Wang, L. V. Three-dimensional Optical-resolution Photoacoustic Microscopy. J Vis Exp. (51), e2729 (2011).
  17. Yao, J., et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods. 12 (5), 407-410 (2015).
  18. Yang, X., Skrabalak, S. E., Li, Z. -. Y., Xia, Y., Wang, L. V. Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent. Nano Lett. 7 (12), 3798-3802 (2007).
  19. Agarwal, A., et al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys. 102 (6), 064701 (2007).
  20. Zackrisson, S., van de Ven, S., Gambhir, S. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res. 74 (4), 979-1004 (2014).
  21. Ermilov, S. A., et al. Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt. 14 (2), 024007 (2009).
  22. Mallidi, S., Luke, G. P., Emelianov, S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 29 (5), 213-221 (2011).
  23. Zhang, H. F., Maslov, K., Stoica, G., Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol. 24 (7), 848 (2006).
  24. Keswani, R. K., et al. Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent. Sci Rep. 6, 23528 (2016).
  25. Strohm, E. M., Berndl, E. S., Kolios, M. C. Probing red blood cell morphology using high-frequency photoacoustics. Biophys J. 105 (1), 59-67 (2013).
  26. Nguyen, V. P., Kim, J., Ha, K. -. l., Oh, J., Kang, H. W. Feasibility study on photoacoustic guidance for high-intensity focused ultrasound-induced hemostasis. J Biomed Opt. 19 (10), 105010 (2014).
  27. Keane, P. A., Sadda, S. R. Retinal imaging in the twenty-first century: state of the art and future directions. Ophthalmology. 121 (12), 2489-2500 (2014).
  28. Keane, P., Sadda, S. Imaging chorioretinal vascular disease. Eye. 24 (3), 422-427 (2010).
  29. Jiao, S., et al. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt Express. 18 (4), 3967-3972 (2010).
  30. Liu, T., et al. Near-infrared light photoacoustic ophthalmoscopy. Biomed Opt Express. 3 (4), 792-799 (2012).
  31. Song, W., et al. A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Sci Rep. 4, 6525 (2014).
  32. Liu, W., Zhang, H. F. Photoacoustic imaging of the eye: a mini review. Photoacoustics. 4 (3), 112-123 (2016).
  33. de La Zerda, A., et al. Photoacoustic ocular imaging. Opt Lett. 35 (3), 270-272 (2010).
  34. Hu, S., Rao, B., Maslov, K., Wang, L. V. Label-free photoacoustic ophthalmic angiography. Opt Lett. 35 (1), 1-3 (2010).
  35. Silverman, R. H., et al. High-resolution photoacoustic imaging of ocular tissues. Ultrasound Med Biol. 36 (5), 733-742 (2010).
  36. Wu, N., Ye, S., Ren, Q., Li, C. High-resolution dual-modality photoacoustic ocular imaging. Opt Lett. 39 (8), 2451-2454 (2014).
  37. Hennen, S. N., et al. Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits. Exp Eye Res. 138, 153-158 (2015).
  38. Tian, C., Zhang, W., Mordovanakis, A., Wang, X., Paulus, Y. M. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography. Opt Express. 25 (14), 15947-15955 (2017).
  39. Laser Institute of America. American National Standard for Safe Use of Lasers ANSI Z136.1 – 2007. American National Standards Institute, Inc. , (2007).
  40. Hughes, A. A schematic eye for the rabbit. Vision Res. 12 (1), 123 (1972).
  41. Ma, T., et al. Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy. J Biomed Opt. 19 (1), 016015 (2014).
  42. Song, W., Wei, Q., Jiao, S., Zhang, H. F. Integrated photoacoustic ophthalmoscopy and spectral-domain optical coherence tomography. J Vis Exp. (71), (2013).
  43. Mattison, S., Kim, W., Park, J., Applegate, B. Molecular Imaging in Optical Coherence Tomography. Curr Mol Imaging. 3 (2), 88-105 (2014).
check_url/it/57135?article_type=t

Play Video

Citazione di questo articolo
Tian, C., Zhang, W., Nguyen, V. P., Wang, X., Paulus, Y. M. Novel Photoacoustic Microscopy and Optical Coherence Tomography Dual-modality Chorioretinal Imaging in Living Rabbit Eyes. J. Vis. Exp. (132), e57135, doi:10.3791/57135 (2018).

View Video