Summary

黑色素瘤细胞衍生因子对骨髓脂肪分化的双重影响

Published: August 23, 2018
doi:

Summary

在这里, 我们提出了一个可靠和直接的二维 (2D) 共培养系统, 研究肿瘤细胞和骨髓细胞之间的相互作用, 这表明黑色素瘤干细胞衍生因子的双重作用对骨髓脂肪的影响分化, 也为骨转移的机械学研究提供了经典的方法。

Abstract

骨髓脂肪细胞与癌细胞的串扰在骨转移过程中起着至关重要的作用。有多种方法可用于研究显著的串扰;然而, 共培养的二维 transwell 系统仍然是这种串扰研究的经典、可靠、简便的方法。在这里, 我们提出了一个详细的协议, 显示了骨髓脂肪细胞和黑色素瘤的共培养。然而, 这种共培养系统不仅有助于研究骨髓脂肪细胞诱导的癌细胞信号 transductions, 而且可以为今后骨转移的机械学研究提供新的治疗靶点。转移。

Introduction

骨转移在晚期癌症患者中普遍存在, 但治疗仍不可用。除了专门储存能量作为脂肪, 脂肪细胞可以支持肿瘤生长和转移骨髓和其他器官1,2,3,4,5,6。此外, 脂肪细胞在调节癌细胞生物学78910和新陈代谢方面起着至关重要的作用,41112 ,13,14,15,16, 以及在骨转移1,4,12。在骨髓小生境中, 脂肪细胞还会影响癌细胞4617的生物学行为。骨髓脂肪细胞与癌细胞 osteotropism 的相互作用对了解骨转移有重要意义。然而, 鲜为人知。

根据目前的研究, 各种方法适用于脂肪细胞, 包括两个或三维 (2/3 d) 和体外培养17,18,19,20,21。最近, Herroon人设计了一种新的 3 d-培养方法来研究骨髓脂肪细胞与癌细胞的相互作用22。虽然3D 共培养是最佳的模仿脂肪细胞和癌细胞在体内的生理相互作用, 它的重现性差22,23。与2D 共培养系统相比, 3D 共培养系统可以提供不同的细胞表型, 如细胞形态学2122242526。此外, 分离的松质骨组织片段的体外培养可以导致骨髓细胞培养出17的生长脂肪体。

然而, 与以前的模型相比, 2D 细胞培养模型仍然是一种经典的、可靠的、易于快速扫描候选分子的技术, 在体外1的脂肪细胞或癌细胞中的表型改变, 4,6,12,15,27.为更好地了解骨髓脂肪细胞与黑色素瘤的相互串扰, 我们提供了一个详细的协议, 为2D 共培养系统的骨髓脂肪细胞与黑色素瘤。

Protocol

注: 本协议中使用的所有细胞在解冻后, 应至少生长三代。 1. 收获黑色素瘤细胞衍生因子 准备 获得 B16F10 细胞和小鼠黑色素瘤细胞系。注: 本协议中, 从中国科学院干细胞库获得了一条小鼠黑色素瘤细胞系。 制作一个完整的培养基为 B16F10 细胞培养 (100 毫升)。使用 Dulbecco 的改良鹰的培养基 (DMEM) 补充10% 胎牛血清 (血清), 50 毫升青霉素和50…

Representative Results

在骨髓, 脂肪细胞可以出现在肿瘤微环境1,13,33,34,35在早期阶段支持肿瘤进展通过可溶性因素或激活 osteoclastogenesis6,12,36, 特别是在肥胖6,12</s…

Discussion

Cocultures 与插入物已被广泛用于研究细胞间的相互作用。2D 共培养系统是观察两个部位在体外进行串扰的有效方法, 我们在这里显示了两种不同的癌细胞驱动对骨髓脂肪细胞的影响。许多实验室利用这种方法来研究脂肪细胞与癌细胞6122739之间的串扰。

因此, 一般而言,…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢 Dov Zipori (魏茨曼科学研究所, 雷霍沃特, 以色列) 亲切地为我们提供小鼠骨髓基质细胞线14F1.1。这项研究得到了中国国家自然科学基金 (81771729 号) 和重庆医科大学永川医院的资助。YJQN201330;YJZQN201527)。

Materials

DMEM Invitrogen Inc. 11965092
Fetal Bovine Serum Invitrogen Inc. 16000–044
Phosphate Buffered Saline Invitrogen Inc. 14190-144
Insulin Sigma-Aldrich 91077C
3-isobutyl-1-methyl-xanthine Sigma-Aldrich I5879
Dexamethasone Sigma-Aldrich D4902
Oil Red o Sigma-Aldrich O0625
24-well plate Corning CLS3527
Transwell insert Millipore MCHT24H48
Penicillin/Streptomycin Invitrogen 15140-122
isopropanol Sigma-Aldrich I9516
0.25% trypsin Thermo Scientific 25200056
hemocytometer Bio-Rad 1450016
Culture incubator Thermo Scientific
50ml falcon Corning CLS430828
Clean Bench Thermo Scientific
Microscopy Olympus
200 μL pipet tips BeyoGold FTIP620
1000 mL pipet tips BeyoGold FTIP628

Riferimenti

  1. Wang, J., et al. Adipogenic niches for melanoma cell colonization and growth in bone marrow. Laboratory Investigation. 97 (6), 737-745 (2017).
  2. Trotter, T. N., et al. Adipocyte-Lineage Cells Support Growth and Dissemination of Multiple Myeloma in Bone. The American Journal of Pathology. 186 (11), 3054-3063 (2016).
  3. Morris, E. V., Edwards, C. M. The role of bone marrow adipocytes in bone metastasis. Journal of Bone Oncology. 5 (3), 121-123 (2016).
  4. Diedrich, J. D., et al. Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1alpha activation. Oncotarget. 7 (40), 64854-64877 (2016).
  5. Chkourko Gusky, H., Diedrich, J., MacDougald, O. A., Podgorski, I. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression. Obesity Reviews. 17 (11), 1015-1029 (2016).
  6. Chen, G. L., et al. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6. Oncotarget. 7 (18), 26653-26669 (2016).
  7. Balaban, S., et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer & Metabolism. 5, 1 (2017).
  8. Huang, C. K., et al. Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via beta-hydroxybutyrate. Nature Communications. 8, 14706 (2017).
  9. Wang, Y. Y., et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight. 2 (4), 87489 (2017).
  10. Wang, C., Gao, C., Meng, K., Qiao, H., Wang, Y. Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2. PLoS One. 10 (3), 0119348 (2015).
  11. Nieman, K. M., et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine. 17 (11), 1498-1503 (2011).
  12. Herroon, M. K., et al. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget. 4 (11), 2108-2123 (2013).
  13. Tabe, Y., et al. Bone Marrow Adipocytes Facilitate Fatty Acid Oxidation Activating AMPK and a Transcriptional Network Supporting Survival of Acute Monocytic Leukemia Cells. Ricerca sul cancro. 77 (6), 1453-1464 (2017).
  14. Wen, Y. A., et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death & Differentiation. 8 (2), 2593 (2017).
  15. Liu, Z., et al. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation. Oncotarget. 6 (33), 34329-34341 (2015).
  16. Ye, H., et al. Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche. Cell Stem Cell. 19 (1), 23-37 (2016).
  17. Templeton, Z. S., et al. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche. Neoplasia. 17 (12), 849-861 (2015).
  18. Daquinag, A. C., Souza, G. R., Kolonin, M. G. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Engineering Part C: Methods. 19 (5), 336-344 (2013).
  19. Emont, M. P., et al. Using a 3D Culture System to Differentiate Visceral Adipocytes In Vitro. Endocrinology. 156 (12), 4761-4768 (2015).
  20. Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S., Searson, P. C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Frontiers in Bioengineering and Biotechnology. 4, 12 (2016).
  21. Edmondson, R., Broglie, J. J., Adcock, A. F., Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. ASSAY and Drug Development Technologies. 12 (4), 207-218 (2014).
  22. Herroon, M. K., Diedrich, J. D., Podgorski, I. New 3D-Culture Approaches to Study Interactions of Bone Marrow Adipocytes with Metastatic Prostate Cancer Cells. Frontiers in Endocrinology (Lausanne). 7, 84 (2016).
  23. Lee, J. M., et al. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Laboratory Investigation. 93 (5), 528-542 (2013).
  24. Imamura, Y., et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncology Reports. 33 (4), 1837-1843 (2015).
  25. Birgersdotter, A., Sandberg, R., Ernberg, I. Gene expression perturbation in vitro–a growing case for three-dimensional (3D) culture systems. Seminars in Cancer Biology. 15 (5), 405-412 (2005).
  26. Wang, W., et al. 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials. 30 (14), 2705-2715 (2009).
  27. Dirat, B., et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Ricerca sul cancro. 71 (7), 2455-2465 (2011).
  28. Scott, M. A., Nguyen, V. T., Levi, B., James, A. W. Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells and Development. 20 (10), 1793-1804 (2011).
  29. Zipori, D., Toledo, J., von der Mark, K. Phenotypic heterogeneity among stromal cell lines from mouse bone marrow disclosed in their extracellular matrix composition and interactions with normal and leukemic cells. Blood. 66 (2), 447-455 (1985).
  30. Maridas, D. E., Rendina-Ruedy, E., Le, P. T., Rosen, C. J. Isolation, Culture, and Differentiation of Bone Marrow Stromal Cells and Osteoclast Progenitors from Mice. Journal of Visualized Experiments. (131), e56750 (2018).
  31. Iguchi, T., Niino, N., Tamai, S., Sakurai, K., Mori, K. Absolute Quantification of Plasma MicroRNA Levels in Cynomolgus Monkeys, Using Quantitative Real-time Reverse Transcription PCR. Journal of Visualized Experiments. (132), e56850 (2018).
  32. Bozec, A., Hannemann, N. Mechanism of Regulation of Adipocyte Numbers in Adult Organisms Through Differentiation and Apoptosis Homeostasis. Journal of Visualized Experiments. (112), e53822 (2016).
  33. Shafat, M. S., et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood. 129 (10), 1320-1332 (2017).
  34. Gazi, E., et al. Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy. The Journal of Lipid Research. 48 (8), 1846-1856 (2007).
  35. Brown, M. D., et al. Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer. British Journal of Cancer. 102 (2), 403-413 (2010).
  36. Hardaway, A. L., Herroon, M. K., Rajagurubandara, E., Podgorski, I. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clinical & Experimental Metastasis. 32 (4), 353-368 (2015).
  37. Aebi, M. Spinal metastasis in the elderly. European Spine Journal. 12, 202-213 (2003).
  38. Wagner, M., Bjerkvig, R., Wiig, H., Dudley, A. C. Loss of adipocyte specification and necrosis augment tumor-associated inflammation. Adipocyte. 2 (3), 176-183 (2013).
  39. Bochet, L., et al. Cancer-associated adipocytes promotes breast tumor radioresistance. Biochemical and Biophysical Research Communications. 411 (1), 102-106 (2011).
  40. Hirano, T., et al. Enhancement of adipogenesis induction by conditioned media obtained from cancer cells. Cancer Letters. 268 (2), 286-294 (2008).
  41. Gordeev, A. A., Chetverina, H. V., Chetverin, A. B. Planar arrangement of eukaryotic cells in merged hydrogels combines the advantages of 3-D and 2-D cultures. Biotechniques. 52 (5), 325-331 (2012).
check_url/it/57329?article_type=t

Play Video

Citazione di questo articolo
Wang, J., Wen, J., Chen, X., Chen, G. Dual Effects of Melanoma Cell-derived Factors on Bone Marrow Adipocytes Differentiation. J. Vis. Exp. (138), e57329, doi:10.3791/57329 (2018).

View Video