Summary

利用果蝇作为无脊椎动物毒性试验模型系统的实验协议

Published: July 10, 2018
doi:

Summary

在本文中, 我们提供了一个详细的协议, 以暴露在果蝇属物种的污染物, 目的是研究暴露对一系列表型产出的影响, 在不同的发展阶段和超过一个世代。

Abstract

紧急性质和外部因素 (特别是人口水平和生态系统层面的相互作用) 在生态重要的端点的调解中起着重要作用, 尽管它们在毒理学研究中很少被考虑。作为毒物的行为、神经和遗传影响的毒理学模型, 腹腹已经成为了一个典型。更重要的是,果蝇属中的物种可以作为一种综合框架方法的模型系统, 在毒物学研究中纳入紧急性质并回答生态相关问题。本文的目的是提供一个协议, 以揭露果蝇属物种的污染物, 作为一个模型系统的一系列表型产出和生态相关的问题。更具体地说, 本议定书可用于 1) 将组织的多个生物层次联系起来, 了解毒物对个人和人口水平的影响;2) 测试毒物在发育暴露的不同阶段的影响;3) 检验污染物的几代和演变影响;4) 同时测试多种污染物和压力源。

Introduction

每年, 化工行业引进约1000种新化学品12;然而, 在23分销之前, 仅有很小一部分化学物质对环境的影响进行了测试。虽然大规模的灾难是罕见的, 致死和长期接触大量的污染物在人类和野生动物4,5普遍存在。生态和环境毒理学的历史焦点是测试致死性、单一化学暴露、急性暴露和暴露的生理效应, 作为衡量污染物对生存6的影响的一种手段,7,8,9,10. 虽然对动物试验采取了伦理和非侵入性的做法, 但目前的做法受到限制, 因为发展、紧急性质和外部因素 (如人口水平和生态系统级相互作用) 在斡旋生态学重要端点8。因此, 有必要在不牺牲野生动物和/或脊椎动物的实验室中纳入更全面的方法。

无脊椎动物模型系统, 如果蝇, 是一个有吸引力的替代方案, 以解决对毒性测试的更全面的方法的需要。在一个世纪前的11, 它最初被发展为人类相关基因研究的无脊椎动物模型系统。由于以下几个原因, 黑腹现在已被广泛用作脊椎动物模型的替代品: 1) 保护的基因和通路之间的黑腹和人类;2) 与脊椎动物模型相比短世代时间;3) 维护成本低廉;4) 易于生成大样本尺寸;和 5) 过多的表型和生态相关的端点可用于测试11,12,13,14,15,16,17.

几个实验室11,15,16,17,18,19, 20,21,22,23,24,25现在使用D.黑腹作为一种脊椎动物模型的毒性试验, 以了解污染对人类的影响。当地野生果蝇可以被利用, 以及作为野生动物 (和人类) 的毒性模型, 以回答生态, 行为上和进化相关的问题, 在多个生物层次的组织。利用果蝇属中的物种作为模型, 几个可测量的端点是可能的11,15,16,18,19,20 ,21,22,23,24,25。另外, 使用果蝇模型, 毒理学家可以: 1) 道德上的链接效应在组织的多生物水平;2) 纳入紧急因素和发展的作用;3) 研究生态学上重要端点 (除医学上重要端点);4) 同时测试多个压力源;5) 和测试的长期多代 (进化和跨代) 的影响的压力。因此, 利用果蝇作为模型系统, 可以采取多种方法, 不限于研究机械方法与自交系的近亲在实验室

本文介绍了果蝇的饲养和采集方法, 以回答各种毒理学问题。更具体地说, 我们描述的方法 1) 饲养果蝇的中掺有一个或多个污染物;2) 在整个发育过程中收集果蝇(流浪的第三龄幼虫、蛹病例、新 eclosed 成年人和成年成年人);3) 在受污染的培养基中饲养果蝇, 以测试代际和跨代的传播, 以及长期毒物暴露对进化的影响。使用此协议, 以前的作者18,19,20,21,22,23,24,25报告了发育铅 (Pb2 +) 暴露的不同生理、遗传和行为效应。这项议定书使毒理学家能够使用一种更整体的毒理学方法, 这对于了解污染物是人类和野生动物在日益污染的环境中的危险因素是必不可少的。

Protocol

下面的协议是一种实验性的协议, 用于后方物种在果蝇属的污染培养基, 当口服摄取毒素是适当的;其他形式的暴露是可能的使用果蝇模型11,15,16,26。本协议中描述的方法以前是由. 19和彼得森等。23,24,<sup cl…

Representative Results

通过将果蝇口头暴露在整个开发过程中, 可以通过将果蝇暴露在不同的生物组织水平来测试各种毒理学问题。本节介绍在以前发表的论文23、24中使用本协议获得的代表性结果。特别是, 本议定书以前用于评估在同一世代的暴露和跨第一代后代23中铅 (Pb) 的积累、消除和封存;并研究了积累对交配选择…

Discussion

果蝇作为一个强大的模型, 为一系列的生物过程, 由于广泛的保护基因和通路之间的人和人类 13,14。由于同样的原因, 它是一个强大的医学模型,果蝇已经成为一个合适的模型系统来研究人类污染对一系列毒理学端点的影响。几个实验室成功地使用了D.黑腹作为模型系统研究一系列化合物, 包括重金属11,<…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这份出版物得到了教育部的资助 (PR 奖 #P031C160025 17, 项目标题: 84.031C) 到科罗拉多州立大学-普韦布洛 (CSU-普韦布洛) 社区, 以建立积极的干细胞参与 (C 基地)。我们感谢目前的动物学和 Elsevier, 提供使用前几份论文中发表的代表性成果的权利, 以及朱庇特的编辑们为我们提供了发表本议定书的机会。我们还要感谢 C 基地计划, 布莱恩凯文·范德·艾格 Heuvel 博士 (c 基地和生物学系, csu-普韦布洛), csu-普韦布洛生物系, 托马斯格拉齐亚诺, 伯纳德 Possidente 博士 (生物学系, 斯基德莫尔学院) 和克莱尔博士拉莫斯(科罗拉多州立大学生物系) 给予他们的支持和帮助。

Materials

Carolina Biological Instant Drosophila Medium Formula 4-24 Carolina Biological 173204
Drosophila vials, Narrow (PS), Polystyrene, Superbulk, 1000 vials/unit Genessee Scientific 32-116SB Used to store flies
Flugs Closures for vials and bottles, Narrow plastic vials Genessee Scientific 49-102 Used to store flies
Cardboard trays, trays only, narrow Genessee Scientific 32-124 Used to organize populations of flies
Cardboard trays, dividers only, narrow Genessee Scientific 32-126 Used to organize populations of flies
Thermo Scientific Nalgene Square Wide-Mouth HDPE Bottles with Closure Fischer Scientific 03-312D Useful for storage of contaminants
Thermo Scientific Nalgene Color-Coded LDPE Wash Bottles Fischer Scientific 03-409-17C Useful for storage of contaminants
Eppendorf Repeater M4 Manual Handheld Pipette Dispenser Fischer Scientific 14-287-150 Used to prepare medium
Combitips Advanced Pipetter Tips – Standard, Eppendorf Quality Tips Fischer Scientific 13-683-708 Used to prepare medium
Flypad, Standard Size (8.1 X 11.6cm) Genessee Scientific 59-114 Used to anesthetize flies
Flystuff foot valve Genessee Scientific 59-121 Used to anesthetize flies
Tubing, green (1 continguous foot/unit) Genessee Scientific 59-124G Used to anesthetize flies
Mineral Oil, Light, White, High Purity Grade, 500 mL HDPE Bottle VWR 97064-130 Used to make a morgue
Glass Erlenmeyer Flask Set – 3 Sizes – 50, 150 and 250ml, Karter Scientific 214U2 Walmart Not applicable Used to make a morgue
BGSET5 Glass Beaker Set Of 5 Walmart
Inbred or wildtype line of Drosophila Bloomington Drosophila Stock Center at Indiana University https://bdsc.indiana.edu
Wild popultions of Drosophila UC San Diego Drosophila Stock Center https://stockcenter.ucsd.edu/info/welcome.php

Riferimenti

  1. Postel, S. . Defusing the Toxics Threat: Controlling Pesticides and Industrial Waste. , (1987).
  2. Vitousek, P. M., Mooney, H. A., Lubchenco, J., Melillo, J. M. Human domination of earth’s ecosystems. Science. 277, 494-499 (1997).
  3. United Nations Environment Program (UNEP). . Saving Our Planet: Challenges and Hopes. , (1992).
  4. Hansen, L. J., Johnson, M. L. Conservation and toxicology: Integrating the disciplines. Conservation Biology. 13, 1225-1227 (1999).
  5. Johnston, E. L., Mayer-Pinto, M., Crowe, T. P. REVIEW: Chemical contaminant effects on marine ecosystem functioning. Journal of Applied Ecology. 52, 140-149 (2015).
  6. Dell’Omo, G. . Behavioral ecotoxicology. , (2002).
  7. Clotfelter, E. D., Bell, A. M., Levering, K. R. The role of animal behaviour in the study of endocrine-disrupting chemicals. Animal Behaviour. 68, 665-676 (2004).
  8. Peterson, E. K., Buchwalter, D. B., Kerby, J. L., LeFauve, M. K., Varian-Ramos, C. W., Swaddle, J. P. Integrative behavioral ecotoxicology: bringing together fields to establish new insight to behavioral ecology, toxicology, and conservation. Current Zoology. 63, 185-194 (2017).
  9. Scott, G. R., Sloman, K. A. The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity. Aquatic Toxicology. 68, 369-392 (2004).
  10. Zala, S. M., Penn, D. J. Abnormal behaviors induced by chemical pollution: A review of the evidence and new challenges. Animal Behaviour. 68, 649-664 (2004).
  11. Abolaji, A. O., Kamdem, J. P., Farombi, E. O., Rocha, J. B. T. Drosophila melanogaster as a promising model organism in toxicological studies. Archives of Basic & Applied Medicine. 1, 33-38 (2013).
  12. Jennings, B. H. Drosophila-a versatile model in biology and medicine. Materials Today. 14, 190-195 (2011).
  13. Pandey, U. B., Nichols, C. D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacology Reviews. 63, 411-436 (2011).
  14. Rubin, G. M., et al. Comparative genomics of the eukaryotes. Science. 287, 2204-2215 (2000).
  15. Rand, M. D. Drosophotoxicology: The growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol. 32, 74 (2010).
  16. Rand, M. D., Montgomery, S. L., Prince, L., Vorojeikina, D. Developmental toxicity assays using the Drosophila model. Current Protocols in Toxicology. 59, 1.12.1-1.12.20 (2015).
  17. Burke, M. K., Rose, M. R. Experimental evolution with Drosophila. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology. 296, R1847-R1854 (2009).
  18. He, T., Hirsch, H. V. B., Ruden, D. M., Lnenicka, G. A. Chronic lead exposure alters presynaptic calcium regulation and synaptic facilitation in Drosophila larvae. NeuroToxicology. 30, 777-784 (2009).
  19. Hirsch, H. V., et al. Behavioral effects of chronic exposure to low levels of lead in Drosophila melanogaster. NeuroToxicology. 24, 435-442 (2003).
  20. Hirsch, H. V. B., et al. Variations at a quantitative trait locus (QTL) affect development of behavior in lead-exposed Drosophila melanogaster. NeuroToxicology. 30, 305-311 (2009).
  21. Morley, E. J., Hirsch, H. V. B., Hollocher, K., Lnenicka, G. A. Effects of chronic lead exposure on the neuromuscular junction in Drosophila larvae. NeuroToxicology. 24, 35-41 (2003).
  22. Ruden, D. M., et al. Genetical toxicologenomics in Drosophila identifies master- modulatory loci that are regulated by developmental exposure to lead. NeuroToxicology. 30, 898-914 (2009).
  23. Peterson, E. K., et al. Accumulation, elimination, sequestration, and genetic variation of lead (Pb2+) loads within and between generations of Drosophila melanogaster. Chemosphere. 181, 368-375 (2017).
  24. Peterson, E. K., et al. Asymmetrical positive assortative mating induced by developmental lead (Pb2+) exposure in a model system, Drosophila melanogaster. Current Zoology. 63, 195-203 (2017).
  25. Peterson, E. K. . Consequences of developmental lead (Pb2+) exposure on reproductive strategies in Drosophila. , (2016).
  26. Chifiriuc, M. C., Ratiu, A. C., Popa, M., Ecovolu, A. A. Drosophotoxicology: An emerging research area for assessing nanoparticles interaction with living organisms. International Journal of Molecular Sciences. 17, 36 (2016).
  27. Lachaise, D., Cariou, M. L., David, J. R., Lemeunier, F., Tsacas, L., Ashburner, M. Historical biogeography of the Drosophila melanogaster species subgroup. Evolutionary Biology. 22, 159-225 (1988).
  28. Elgin, C. R., Miller, D. W., Ashburner, M., Wright, T. R. F. Mass rearing of flies and mass production and harvesting of embryos. The Genetics and Biology of Drosophila. 2a, 112-121 (1978).
  29. Shaffer, C. D., Wuller, J. M., Elgin, C. R. Chapter 5: Raising large quantities of Drosophila for biochemical experiments. Methods in Cell Biology. 44, 99-108 (1994).
  30. Stocker, H., Gallant, P. Getting started: an overview on raising and handling Drosophila. Methods in Molecular Biology. 420, 27-44 (2008).
  31. Jennings, J. H., Etges, W. J., Schmitt, T., Hoikkala, A. Cuticular hydrocarbons of Drosophila montana: geographic variation, sexual dimorphism and potential roles as pheromones. Journal of Insect Physiology. 61, 16-24 (2014).
  32. Markow, T. A., O’Grady, P. M. . Drosophila: A Guide to Species Identification and Use. , (2005).
  33. Werner, T., Jaenike, J. . Drosopholids of the midwest and northeast. , (2017).
  34. Greenspan, R. J. The basics of doing a cross. Fly Pushing: The theory and practice of Drosophila genetics. , 3-24 (1997).
  35. JoVE Science Education Database. . . Biology I: yeast, Drosophila and C. elegans. Drosophila Maintenance. , (2018).
  36. Castañeda, P. L., Muñoz, G. L. E., Durán, D. A., Heres, P. M. E., Dueñas, G. I. E. LD50 in Drosophila melanogaster. fed on lead nitrate and lead acetate. Drosophila Information Service. 84, 44-48 (2001).
  37. Massie, H. R., Aiello, V. R., Whitney, S. J. P. Lead accumulation during aging of Drosophila and effect of dietary lead on life span. Age. 15, 47-49 (1992).
  38. Akins, J. M., Schroeder, J. A., Brower, D. L., Aposhian, H. V. Evaluation of Drosophila melanogaster as an alternative animal for studying the neurotoxicity of heavy metals. BioMetals. 5, 111-120 (1992).
  39. Zhou, S., et al. The genetic basis for variation in sensitivity to lead toxicity in Drosophila melanogaster. Environmental Health Perspectives. 124, 1062-1070 (2016).
  40. Pitnick, S., Markow, T. A., Spicer, G. S. Delayed male maturity is a cost of producing large sperm in Drosophila. Proceedings of National Academy of Sciences USA. 92, 10614-10618 (1995).
  41. Beauchemin, D. Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry. 82, 4786-4810 (2010).
  42. Tyler, M. S., Tyler, M. S. Development of the fruit fly Drosophila melanogaster. Developmental Biology, a Guide for Experimental Study. , 8-27 (2000).
  43. Ortiz, J. G., Opoka, R., Kane, D., Cartwright, I. L. Investigating arsenic susceptibility from a genetic perspective in Drosophila reveals a key role for glutathione synthetase. Toxicological Sciences. 107, 416-426 (2009).
  44. Bonilla, E., Contreras, R., Medina-Leendertz, S., Mora, M., Villalobos, V., Bravo, Y. Minocycline increases the life span and motor activity and decreases lipid peroxidation in manganese treated Drosophila melanogaster. Toxicology. 294, 50-53 (2012).
  45. Guarnieri, D. J., Heberlein, U. Drosophila melanogaster, a genetic model system for alcohol research. International Review of Neurobiology. 54, 199-228 (2003).
  46. Posgai, R., Cipolla-McCulloch, C. B., Murphy, K. R., Hussain, S. M., Rowe, J. J., Nielsen, M. G. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere. 85, 34-42 (2011).
  47. Gupta, S. C., et al. Adverse effect of organophosphate compounds, dichlorvos and chlorpyrifos in the reproductive tissues of transgenic Drosophila melanogaster: 70kDa heat shock protein as a marker of cellular damage. Toxicology. 238, 1-14 (2007).
  48. Wasserkort, R., Koller, T. Screening toxic effects of volatile organic compounds using Drosophila melanogaster. Journal of Applied Toxicology. 17, 119-125 (1997).
  49. Markow, T. A., O’Grady, P. O. Reproductive ecology of Drosophila. Functional Ecology. 22, 747-759 (2008).
  50. Dev, K., Chahal, J., Parkash, R. Seasonal variations in the mating-related traits of Drosophila melanogaster. Journal of Ethology. 31, 165-174 (2013).
  51. Salminen, T. S., Vesala, L., Laiho, A., Merisalo, M., Hoikkala, A., Kankare, M. Seasonal gene expression kinetics between diapause phases in Drosophila virilus group species and overwintering differences between diapausing and non-diapausing females. Nature Scientific Reports. 5, 11197 (2015).
  52. Miller, R. S., Thomas, J. L. The effects of larval crowding and body size on the longevity of adult Drosophila melanogaster. Ecology. 39, 118-125 (1958).
  53. Peterson, E. K., Ghiradella, H., Possidente, B., Hirsch, H. Transgenerational epigenetic effects of lead exposure on behavior in Drosophila melanogaster. 11, 492-493 (2012).
  54. Soares, J. J., et al. Continuous liquid feeding: New method to study pesticides toxicity in Drosophila melanogaster. Analytical Biochemistry. 537, 60-62 (2017).
check_url/it/57450?article_type=t

Play Video

Citazione di questo articolo
Peterson, E. K., Long, H. E. Experimental Protocol for Using Drosophila As an Invertebrate Model System for Toxicity Testing in the Laboratory. J. Vis. Exp. (137), e57450, doi:10.3791/57450 (2018).

View Video