Summary

完全性和部分主动脉闭塞治疗猪失血性休克

Published: August 24, 2018
doi:

Summary

在这里, 我们提出了一个协议, 以证明一个失血性休克模型的猪, 使用主动脉闭塞作为桥梁, 最终护理的创伤。该模型在测试多种外科和药理治疗策略中有应用。

Abstract

出血仍然是造成创伤的可预防死亡的主要原因。非可压缩躯干出血的血管内处理是近年来创伤护理的前沿问题。由于完全性主动脉闭塞引起严重关注, 部分主动脉闭塞的概念得到了越来越多的关注。在这里, 我们提出了一个大的失血性休克动物模型, 以研究一种新的部分主动脉球囊闭塞导管的影响, 并将其与导管进行比较, 适用于完全主动脉闭塞的原则。对猪进行麻醉和检测, 以进行控制的固定容积出血, 并监测血流动力学和生理参数。出血后, 主动脉球囊闭塞导管插入和充气在 supraceliac 主动脉60分钟, 在此期间, 动物接受全血复苏为20% 的总血容量 (TBV)。在气球通缩后, 动物被监测在一个关键的护理设置4小时, 在此期间, 他们接受液体复苏和 vasopressors 的需要。部分主动脉球囊闭塞显示在气球充气期间改善了远端平均动脉压力 (map), 减少了缺血标志物, 减少了液体复苏和升压使用。猪失血性休克模型可以用来测试各种治疗策略, 因为出血后的猪生理和稳态反应已经有了很好的记录, 和人类一样。除了治疗出血, 主动脉球囊闭塞导管已成为流行的作用, 在心脏骤停, 心脏和血管外科手术, 以及其他高危的选择性手术程序。

Introduction

出血仍然是在发生创伤事件的患者中可预防死亡的主要原因, 在军事环境中占90% 的创伤相关死亡, 40% 的平民人口中创伤后死亡人数为1,2. 虽然直接压力可以治疗可压缩的出血, 但不可压缩的躯干出血仍然难以治疗, 而且如果没有迅速止血控制, 就可能致死。复苏开胸或开腹主动脉交叉夹持术的历史方法已被证明是极具侵袭性的3,4。这种干预还需要一个复杂的选择算法, 以确定的候选者, 曾遭受创伤性侮辱5

近年来, 人们对先前所描述的方法 (REBOA)678复苏血管内气囊闭塞的兴趣再次抬头。虽然 REBOA 在出血中赋予了短期生存优势, 但在气球膨胀期间长时间完全阻断主动脉会引起严重关切, 包括不可逆转的端器官缺血910。为了克服这一潜在的发病率, 正在制定替代的血管内策略来管理出血。一个这样的战略, 已经看到越来越多的关注是部分闭塞的主动脉11,12。部分主动脉球囊闭塞的想法提供了血管床远端的静脉闭塞, 改善生理近端主动脉图, 并逐步后负荷减少后, 气球通缩。这些参数的变化是需要修改的生理特性的流血动物。在这种方法对人类的翻译之前, 完全和部分主动脉球囊闭塞导管已被大量测试的猪模型失血性休克11,12,13

猪已被用于研究失血性休克多年。目前对失血性休克病理生理学的理解大多是利用动物模型 (包括猪) 的研究得出的。他们的生理和平衡反应在设置的病理体积衰竭后出血, 特别是那些有关凝血和心血管反应, 已被充分记录和像那些人14。猪失血性休克模型也为研究失血性休克和其他外伤的治疗策略提供了机会。

在本研究中, 我们展示了一个临床现实模型的猪失血性休克评估血管内治疗策略, 包括完全和部分主动脉球囊闭塞。我们推测, 部分闭塞的主动脉导致一个更好的生理和实验室的情况相比, 完全闭塞的主动脉的猪接受控制的固定容积出血。

我们的目的是比较部分和完全性主动脉闭塞作为一种治疗失血性休克猪模型的生理效应。在外伤 (穿甲弹) 导管中采用选择性主动脉球囊闭塞术 (图 1) 实现部分主动脉闭塞。穿甲弹导管是一种双气囊系统, 允许腔内血流, 从而提供了部分主动脉流到闭塞的血管床远端。完全主动脉闭塞是通过单气囊主动脉闭塞导管 (例如, 尾端) (图 1) 实现的。治疗组随机接受复苏主动脉闭塞, 无论是完全或与部分主动脉球囊闭塞导管 (n = 2/组)。

该模型的主要步骤包括诱导麻醉和插管, 维护麻醉, 仪器仪表, 35% TBV 出血 (20 分钟总; 一半以上的前7分钟, 一半以上其余13分钟), 主动脉球囊闭塞和全血复苏 (60 分钟闭塞; 20% 全血复苏在最后20分钟的闭塞), 危重监护监测 (240 分钟) 与血流动力学观察, 安乐死与组织采伐。图 2演示了本实验中使用的模型。

Protocol

在使用动物进行研究时, 调查人员遵守了《动物福利法条例》和其他有关动物和实验的联邦法规以及有关动物的试验和《护理和使用指南》现行版本中规定的原则。国家研究委员会的实验动物。这项研究议定书获得了密歇根大学机构动物保育和使用委员会 (IACUC) 的批准。实验是按照所有有关动物福利的条例和准则进行的。 1. 动物的选择和驯化 使用女约克郡-长白杂交猪…

Representative Results

血流动力学和生理参数: 该地图在出血后立即减少 (图 3A – 3D)。在气球充气阶段, 完全闭塞组的动物比部分闭塞组的动物经历了更高的近端图 (图 3A和3B)。与完全闭塞组 (平均远端图, 气球充气阶段相比, 局部闭塞组的平均远端图为高; 部分:31 2.9 mmHg, 完整: 16.5 @ 1.14 mmHg;p > 0.05)…

Discussion

在本议定书中, 我们强调了猪失血性休克模型。该模型已被证明是可靠的和可重现的16,17,18,19。类似于此的模型已被用于研究失血性休克对动物生理学16,20的影响的一些科学研究。此外, 该模型还用于测试药物和手术治疗的出血性休克的干预, 标志着成功<sup cl…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们想感谢雷切尔 O ‘ 康奈尔, 和杰西卡李为他们的帮助, 动物研究。我们也要承认少校哈罗德 Timboe, MD, 英里, 美国陆军 (Ret), 谁是这个项目的顾问和导师。

Materials

Yorkshire-Landrace Swine Michigan State University Veterinary Farm
Anesthesia: Telazol Pfizer Dose: 2-8 mg/kg; IM
Anti-cholinergic: Atropine Pfizer Dose: 1mg, IM
Anesthesia: Isoflurane Baxter Dose: 1-5%, INH
Betadine Humco
Alcohol 70% Humco NDC 0395-4202-28
Datex-Aespire Anesthesia Machine GE Healthcare 7900
Endotracheal tube DEE Veterinary 20170518 Appropriate size for animal (6.5 or 7.0F)
Laryngoscope Miller 85-0045
Stylet Hudson RCI 5-151–1
Jelco 20G IV Catheter Smiths Medical 4054
Operating Room Monitor (Vital Signs Monitor) SurgiVet Advisor V9201 May require at least 2
Surgical Gowns Kimberly Clark 90142 Use appropriate size for surgeon.
Sterile surgical gloves Cardinal Health (Allegiance) 22537-570 Use appropriate size for surgeon.
Cautery Pencil Medline ESPB 2000
Suction tubing Medline DYND50251
Sunction tip: Yankauer Medline DYND50130
Bovie Aaron 1250 Electrocautery Unit Bovie Medical Co. FL BOV-A1250U
Salpel Blade – Size #10 Cardinal Health (Allegiance) 32295-010
Scalpel Handle Martin 10-295-11
Debakey Forceps Roboz RS-7562
Weitlander Retractor Roboz RS-8612
Mayo Scissors Roboz RS-76870SC
Army-navy Retractor Teleflex 164715
Mixter Right-angle Forceps Teleflex 175073
5F (1.7 mm) 11 cm Insertion Sheath with 0.35" Guidewire Boston Scientific 16035-05B
8F (2.7 mm) 11 cm Insertion Sheath with 0.35'' Guidewire Boston Scientific 16035-08B
20G angled Introducer Needle Arrow AK-09903-S
14F (4.78 mm) 13 cm Insertion Sheath with 10F dilator Cook Medical G08024
2-0 Silk 18'' 45 cm Ethicon A185H
3-0 Vicryl 36'' 90 cm Ethicon J344H
3-0 Nylon 18'' 45 cm Ethicon 663G
4-0 Prolene 30'' 75 cm Ethicon 8831H
20 ml syringe Metronic/Covidien 8881512878
3 mL syringe Metronic/Covidien 1180300555
6 mL syringe Metronic/Covidien 1180600777
1000ml 0.9% Saline Baxter 2B1324X
Foley Catheter (18F 30 cc) Bard 0166V18S
Urinary Drainage Bag Bard 154002
9F 10 cm Insertion Sheath Arrow AK-09903-S
Swan-Ganz pulmonary artery catheter (8F) Edwards Lifesciences co. CA 746F8
Carotid Flow Probe System Transonic, Ithaca, NY 3, 4, or 6 mm probes
SABOT catheter Hayes Inc.
CODA balloon catheter Cook Medical 8379144
Ultrasound, M-Turbo SonoSite
Amplatz Stiff Guidewire (0.035 inch, 260 cm) Cook Medical G03460
Arterial Blood Gas Syringes Smiths Medical 4041-2
Arterial Blood Gas Analyzer Nova Biochemical ABL800
Masterflex Pump Cole Palmer HV-77921-75
Blood Collection Bags Terumo 1BBD606A
Macro IV drip set Hospira 12672-28
Pentobarbital Pfizer Dose: 100 mg/kg; IV
Eppendorf Tubes Sorenson 11590
50 cc conical tubes Falcon 352097
Formalin Fisherbrand 431121
Bair Hugger Normothermia System Arizant Healthcare, Inc.

Riferimenti

  1. Kauvar, D. S., Lefering, R., Wade, C. E. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. The Journal of Trauma: Injury, Infection and Critical. 60, S3-S11 (2006).
  2. Kauvar, D. S., Wade, C. E. The epidemiology and modern management of traumatic hemorrhage: US and international perspectives. Critical Care. 9, S1-S9 (2005).
  3. Mattox, K. L., Allen, M. K., Feliciano, D. V. Laparotomy in the emergency department. Journal of the American College of Emergency Physicians. 8 (5), 180-183 (1979).
  4. Pust, G. D., Namias, N. Resuscitative thoracotomy. International Journal of Surgery. 33 (Pt B), 202-208 (2016).
  5. Burlew, C. C., et al. Trauma Association critical decisions in trauma: resuscitative thoracotomy. Journal of Trauma and Acute Care Surgery. 73 (6), 1359-1363 (2012).
  6. DuBose, J. J., et al. The AAST prospective Aortic Occlusion for Resuscitation in Trauma and Acute Care Surgery (AORTA) registry: Data on contemporary utilization and outcomes of aortic occlusion and resuscitative balloon occlusion of the aorta (REBOA). Journal of Trauma and Acute Care Surgery. 81 (3), 409-419 (2016).
  7. Biffl, W. L., Fox, C. J., Moore, E. E. The role of REBOA in the control of exsanguinating torso hemorrhage. Journal of Trauma and Acute Care Surgery. 78 (5), 1054-1058 (2015).
  8. Manzano Nunez, R., et al. A meta-analysis of resuscitative endovascular balloon occlusion of the aorta (REBOA) or open aortic cross-clamping by resuscitative thoracotomy in non-compressible torso hemorrhage patients. World Journal of Emergency Surgery. 12, 30 (2017).
  9. Gupta, B. K., et al. The role of intra-aortic balloon occlusion in penetrating abdominal trauma. Journal of Trauma. 29 (6), 861-865 (1989).
  10. Inoue, J., et al. Resuscitative endovascular balloon occlusion of the aorta might be dangerous in patients with severe torso trauma: A propensity score analysis. Journal of Trauma and Acute Care Surgery. 80 (4), 559-566 (2016).
  11. Russo, R. M., et al. Extending the golden hour: Partial resuscitative endovascular balloon occlusion of the aorta in a highly lethal swine liver injury model. Journal of Trauma and Acute Care Surgery. 80 (3), 378-380 (2016).
  12. Russo, R. M., et al. Partial Resuscitative Endovascular Balloon Occlusion of the Aorta in Swine Model of Hemorrhagic Shock. Journal of the American College of Surgeons. 223 (2), 359-368 (2016).
  13. Williams, T. K., et al. Extending resuscitative endovascular balloon occlusion of the aorta: Endovascular variable aortic control in a lethal model of hemorrhagic shock. The Journal of Trauma and Acute Care Surgery. 81 (2), 294-301 (2016).
  14. Hannon, J. P., Swindle, M. M. Hemorrhage and hemorrhagic-shock in swine: A review. Swine as Models in Biomedical Research. , 197-245 (1992).
  15. Garry, B. P., Bivens, H. E. The Seldinger technique. Journal of Cardiothorac Anesthesia. 2 (3), 403 (1988).
  16. Halaweish, I., et al. Addition of low-dose valproic acid to saline resuscitation provides neuroprotection and improves long-term outcomes in a large animal model of combined traumatic brain injury and hemorrhagic shock. The Journal of Trauma and Acute Care Surgery. 79 (6), 911-919 (2015).
  17. Alam, H. B., et al. Surviving blood loss without blood transfusion in a swine poly-trauma model. Surgery. 146 (2), 325-333 (2009).
  18. Jin, G., et al. Traumatic brain injury and hemorrhagic shock: evaluation of different resuscitation strategies in a large animal model of combined insults. Shock. 38 (1), 49-56 (2012).
  19. Nikolian, V. C., et al. Valproic acid decreases brain lesion size and improves neurologic recovery in swine subjected to traumatic brain injury, hemorrhagic shock, and polytrauma. The Journal of Trauma and Acute Care Surgery. 83 (6), 1066-1073 (2017).
  20. Langeland, H., Lyng, O., Aadahl, P., Skjaervold, N. K. The coherence of macrocirculation, microcirculation, and tissue metabolic response during nontraumatic hemorrhagic shock in swine. Physiological Reports. 5 (7), (2017).
  21. Johnson, M. A., et al. The effect of resuscitative endovascular balloon occlusion of the aorta, partial aortic occlusion and aggressive blood transfusion on traumatic brain injury in a swine multiple injuries model. Journal of Trauma Acute Care Surgery. 83 (1), 61-70 (2017).
  22. Theisen, M. M., et al. Ventral recumbency is crucial for fast and safe orotracheal intubation in laboratory swine. Laboratory Animals. 43 (1), 96-101 (2009).
  23. Li, Y., Alam, H. B. Modulation of acetylation: creating a pro-survival and anti-inflammatory phenotype in lethal hemorrhagic and septic shock. Journal of Biomedicine and Biotechnology. 2011, 523481 (2011).
  24. Nikolian, V. C., et al. Valproic acid decreases brain lesion size and improves neurologic recovery in swine subjected to traumatic brain injury, hemorrhagic shock, and polytrauma. The Journal of Trauma and Acute Care Surgery. 83 (6), 1066-1073 (2017).
  25. Dekker, S. E., et al. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs. Surgery. 156 (3), 556-563 (2014).
  26. Causey, M. W., McVay, D. P., Miller, S., Beekley, A., Martin, M. The efficacy of Combat Gauze in extreme physiologic conditions. The Journal of Surgical Research. 177 (2), 301-305 (2012).
  27. Frankel, D. A., et al. Physiologic response to hemorrhagic shock depends on rate and means of hemorrhage. The Journal of Surgical Research. 143 (2), 276-280 (2007).
  28. Morrison, J. J., et al. The inflammatory sequelae of aortic balloon occlusion in hemorrhagic shock. The Journal of Surgical Research. 191 (2), 423-431 (2014).
  29. White, J. M., et al. A porcine model for evaluating the management of noncompressible torso hemorrhage. Journal of Trauma. 71, S131-S138 (2011).
  30. Alam, H. B., et al. Putting life on hold-for how long? Profound hypothermic cardiopulmonary bypass in a Swine model of complex vascular injuries. Journal of Trauma. 64 (4), 912-922 (2008).
  31. Bebarta, V. S., Daheshia, M., Ross, J. D. The significance of splenectomy in experimental swine models of controlled hemorrhagic shock. The Journal of Trauma and Acute Care Surgery. 75 (5), 920 (2013).
  32. Georgoff, P. E., et al. Alterations in the human proteome following administration of valproic acid. Journal of Trauma and Acute Care Surgery. 81 (6), 1020-1027 (2016).
  33. Dekker, S. E., et al. Different resuscitation strategies and novel pharmacologic treatment with valproic acid in traumatic brain injury. Journal of Neuroscience Research. 96 (4), 711-719 (2017).
  34. Georgoff, P. E., et al. Safety and Tolerability of Intravenous Valproic Acid in Healthy Subjects: A Phase I Dose-Escalation Trial. Clinical Pharmacokinetics. 57 (2), 209-219 (2017).

Play Video

Citazione di questo articolo
Williams, A. M., Bhatti, U. F., Dennahy, I. S., Chtraklin, K., Chang, P., Graham, N. J., Baccouche, B. M., Roy, S., Harajli, M., Zhou, J., Nikolian, V. C., Deng, Q., Tian, Y., Liu, B., Li, Y., Hays, G. L., Hays, J. L., Alam, H. B. Complete and Partial Aortic Occlusion for the Treatment of Hemorrhagic Shock in Swine. J. Vis. Exp. (138), e58284, doi:10.3791/58284 (2018).

View Video