Summary

Uso de microarrays para interrogar el impacto microambiental en fenotipos celulares en cáncer

Published: May 21, 2019
doi:

Summary

El propósito del método presentado aquí es mostrar cómo los microarrays de microambiente (MEMA) pueden ser fabricados y utilizados para interrogar el impacto de miles de microambientes combinatorios simples en el fenotipo de las células cultivadas.

Abstract

Comprender el impacto del microambiente en el fenotipo de las células es un problema difícil debido a la compleja mezcla de factores de crecimiento solubles y proteínas asociadas a la matriz en el microambiente in vivo. Además, los reactivos fácilmente disponibles para el modelado de microambientes in vitro suelen utilizar mezclas complejas de proteínas que están incompletamente definidas y sufren de variabilidad lote a lote. La plataforma de microarray (MEMA) permite evaluar miles de combinaciones simples de proteínas de microambiente por su impacto en los fenotipos celulares en un solo ensayo. Los MEMA se preparan en placas de pozos, lo que permite la adición de ligandos individuales para separar los pocillos que contienen proteínas de matriz de matriz extracelular (ECM). La combinación del ligando soluble con cada ECM impreso forma una combinación única. Un ensayo MEMA típico contiene más de 2.500 microambientes combinatoriales únicos a los que las células están expuestas en un solo ensayo. Como caso de prueba, la línea celular de cáncer de mama MCF7 estaba chapada en la plataforma MEMA. El análisis de este ensayo identificó factores que mejoran e inhiben el crecimiento y la proliferación de estas células. La plataforma MEMA es altamente flexible y se puede ampliar para su uso con otras cuestiones biológicas más allá de la investigación del cáncer.

Introduction

El cultivo de líneas celulares cancerosas en plástico en monocapas bidimensionales (2D) sigue siendo uno de los principales caballos de batalla para los investigadores del cáncer. Sin embargo, el microambiente está siendo cada vez más reconocido por su capacidad para afectar a los fenotipos celulares. En el cáncer, se sabe que el microambiente tumoral influye en múltiples comportamientos celulares, incluyendo el crecimiento, la supervivencia, la invasión y la respuesta a la terapia1,2. Los cultivos celulares monocapa tradicionales suelen carecer de influencias en el microambiente, lo que ha llevado al desarrollo de ensayos tridimensionales (3D) más complejos para cultivar células, incluidos los extractos de membrana de sótano purificados disponibles comercialmente. Sin embargo, estas matrices purificadas suelen ser complicadas de usar y sufren de problemas técnicos como la variabilidad de lotes3 y composiciones complejas3. Como resultado, puede ser difícil asignar la función a proteínas específicas que pueden estar afectando a los fenotipos celulares3.

Para hacer frente a estas limitaciones, hemos desarrollado la tecnología de microarray (MEMA), que reduce el microambiente a combinaciones simples de matriz extracelular (ECM) y proteínas de factor de crecimiento soluble4,5 . La plataforma MEMA permite identificar factores microambientales dominantes que afectan el comportamiento de las células. Mediante el uso de un formato de matriz, se pueden analizar miles de combinaciones de factores de microambiente en un solo experimento. El MEMA descrito aquí interroga 2.500 condiciones únicas de microambiente diferentes. Las proteínas ECM impresas en placas de pozos forman almohadillas de crecimiento sobre las cuales se pueden cultivar células. Los ligandos solubles se añaden a los pozos individuales, creando microambientes combinatorias únicos (ECM + ligando) en cada punto diferente al que están expuestas las células. Las células se cultivan durante varios días, luego se fijan, manchan e imágenes para evaluar los fenotipos celulares como resultado de la exposición a estas combinaciones específicas de microambiente. Dado que los microambientes son combinaciones simples, es sencillo identificar proteínas que impulsan cambios fenotípicos importantes en las células. Los MEMA se han utilizado con éxito para identificar factores que influyen en múltiples fenotipos celulares, incluyendo aquellos que impulsan las decisiones del destino celular y la respuesta alaterapia4,5,6,7. Estas respuestas se pueden validar en experimentos 2D simples y luego se pueden evaluar en condiciones que recapitulan más plenamente la complejidad del microambiente tumoral. La plataforma MEMA es altamente adaptable a una variedad de tipos de células y puntos finales, siempre que estén disponibles buenos biomarcadores fenotípicos.

Protocol

NOTA: En el diagrama de flujo que se muestra en la Figura 1se describe una descripción general de todo el proceso MEMA, incluido el tiempo estimado. Este protocolo detalla la fabricación de MEMAs en placas de 8 pocillos. El protocolo puede adaptarse a otras placas o portaobjetos. 1. Preparación de tampones de proteínas, diluyentes y tinción Equilibrar viales de EME, ligandos y citoquinas a temperatura ambiente (RT) y centrífuga bre…

Representative Results

Para simplificar los impactos microambientales en el crecimiento y la proliferación celular e identificar las condiciones que promovieron o inhibió el crecimiento celular y la proliferación, la línea celular de cáncer de mama MCF7 se sembraba en un conjunto de ocho MEMA de 8 pozos como se describe en el protocolo. Este ensayo expuso las células a 48 EME diferentes y 57 ligandos diferentes, para un total de 2736 condiciones microambientales combinatorias. Después de 71 h en cultivo, las células fueron pulsadas con…

Discussion

La importancia de la “dimensionalidad” y el contexto ha sido un factor motivador en el desarrollo de sistemas de cultivo in vitro como herramientas en la caracterización de las células cancerosas a través de su interacción con el microambiente11,y la capacidad de in vitro sistemas de cultura para imitar el entorno in vivo es una fuerza impulsora detrás de la búsqueda de mejorar esos sistemas de cultivo. Los sistemas in vitro, sin embargo, siguen siendo herramientas significativas de la inves…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Este trabajo fue apoyado por la subvención HG008100 (J.W.G., L.M.H. y J.E.K. de la Biblioteca del Fondo Común de NIH).

Materials

Aushon 2470 Aushon BioSystems Arrayer robot system used in the protocol
Nikon HCA Nikon High Content Imaging system designed around Nikon Eclipse Ti Inverted Microscope
BioTek Precision XS liquid Handler BioTek liquid handling robot used in the protocol
Trizma hydrochloride buffer solution Sigma T2069
EDTA Invitrogen 15575-038
Glycerol Sigma G5516
Triton X100 Sigma T9284
Tween 20 Sigma P7949
Kolliphor P338 BASF 50424591
384-well microarray plate, cylindrical well Thermo Fisher ab1055
Nunc 8 well dish Thermo Fisher 267062
Paraformaldehyde 16% solution Electron Microscopy Science 15710
BSA Fisher BP-1600
Sodium Azide Sigma S2002
Cell Mask Molecular Probes H32713
Click-iTEdU Alexa Fluor Molecular Probes C10357
DAPI Promo Kine PK-CA70740043
ALCAM R & D Systems 656-AL ECM
Cadherin-20 (CDH20) R & D Systems 5604-CA ECM
Cadherin-6 (CDH6) R & D Systems 2715-CA ECM
Cadherin-8 (CDH8) R & D Systems 188-C8 ECM
CD44 R & D Systems 3660-CD ECM
CEACAM6 R & D Systems 3934-CM ECM
Collagen I Cultrex 3442-050-01 ECM
Collagen Type II Millipore CC052 ECM
Collagen Type III Millipore CC054 ECM
Collagen Type IV Sigma C5533 ECM
Collagen Type V Millipore CC077 ECM
COL23A1 R & D Systems 4165-CL ECM
Desmoglein 2 R & D Systems 947-DM ECM
E-cadherin (CDH1) R & D Systems 648-EC ECM
ECM1 R & D Systems 3937-EC ECM
Fibronectin R & D Systems 1918-FN ECM
GAP43 Abcam ab114188 ECM
HyA-500K R & D Systems GLR002 ECM
HyA-50K R & D Systems GLR001 ECM
ICAM-1 R & D Systems 720-IC ECM
Laminin Sigma L6274 ECM
Laminin-5 Abcam ab42326 ECM
Lumican R & D Systems 2846-LU ECM
M-Cad (CDH15) R & D Systems 4096-MC ECM
Nidogen-1 R & D Systems 2570-ND ECM
Osteoadherin/OSAD R & D Systems 2884-AD ECM
Osteopontin (SPP) R & D Systems 1433-OP ECM
P-Cadherin (CDH3) R & D Systems 861-PC ECM
PECAM1 R & D Systems ADP6 ECM
Tenascin C R & D Systems 3358-TC ECM
VCAM1 R & D Systems ADP5 ECM
vitronectin R & D Systems 2308-VN ECM
Biglycan R & D Systems 2667-CM ECM
Decorin R & D Systems 143-DE ECM
Periostin R & D Systems 3548-F2 ECM
SPARC/osteonectin R & D Systems 941-SP ECM
Thrombospondin-1/2 R & D Systems 3074-TH ECM
Brevican R & D Systems 4009-BC ECM
Elastin BioMatrix 5052 ECM
Fibrillin Lynn Sakai Lab OHSU N/A ECM
ANGPT2 RnD_Systems_Own 623-AN-025 Ligand
IL1B RnD_Systems_Own 201-LB-005 Ligand
CXCL8 RnD_Systems_Own 208-IL-010 Ligand
IGF1 RnD_Systems_Own 291-G1-200 Ligand
TNFRSF11B RnD_Systems_Own 185-OS Ligand
BMP6 RnD_Systems_Own 507-BP-020 Ligand
FLT3LG RnD_Systems_Own 308-FK-005 Ligand
CXCL1 RnD_Systems_Own 275-GR-010 Ligand
DLL4 RnD_Systems_Own 1506-D4-050 Ligand
HGF RnD_Systems_Own 294-HGN-005 Ligand
Wnt5a RnD_Systems_Own 645-WN-010 Ligand
CTGF Life_Technologies_Own PHG0286 Ligand
LEP RnD_Systems_Own 398-LP-01M Ligand
FGF2 Sigma_Aldrich_Own SRP4037-50UG Ligand
FGF6 RnD_Systems_Own 238-F6 Ligand
IL7 RnD_Systems_Own 207-IL-005 Ligand
TGFB1 RnD_Systems_Own 246-LP-025 Ligand
PDGFB RnD_Systems_Own 220-BB-010 Ligand
WNT10A Genemed_Own 90009 Ligand
PTN RnD_Systems_Own 252-PL-050 Ligand
BMP3 RnD_Systems_Own 113-BP-100 Ligand
BMP4 RnD_Systems_Own 314-BP-010 Ligand
TNFSF11 RnD_Systems_Own 390-TN-010 Ligand
CSF2 RnD_Systems_Own 215-GM-010 Ligand
BMP5 RnD_Systems_Own 615-BMC-020 Ligand
DLL1 RnD_Systems_Own 1818-DL-050 Ligand
NRG1 RnD_Systems_Own 296-HR-050 Ligand
KNG1 RnD_Systems_Own 1569-PI-010 Ligand
GPNMB RnD_Systems_Own 2550-AC-050 Ligand
CXCL12 RnD_Systems_Own 350-NS-010 Ligand
IL15 RnD_Systems_Own 247-ILB-005 Ligand
TNF RnD_Systems_Own 210-TA-020 Ligand
IGFBP3 RnD_Systems_Own 675-B3-025 Ligand
WNT3A RnD_Systems_Own 5036-WNP-010 Ligand
PDGFAB RnD_Systems_Own 222-AB Ligand
AREG RnD_Systems_Own 262-AR-100 Ligand
JAG1 RnD_Systems_Own 1277-JG-050 Ligand
BMP7 RnD_Systems_Own 354-BP-010 Ligand
TGFB2 RnD_Systems_Own 302-B2-010 Ligand
VEGFA RnD_Systems_Own 293-VE-010 Ligand
IL6 RnD_Systems_Own 206-IL-010 Ligand
CXCL12 RnD_Systems_Own 351-FS-010 Ligand
NRG1 RnD_Systems_Own 378-SM Ligand
IGFBP2 RnD_Systems_Own 674-B2-025 Ligand
SHH RnD_Systems_Own 1314-SH-025 Ligand
FASLG RnD_Systems_Own 126-FL-010 Ligand

Riferimenti

  1. Hanahan, D., Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 21 (3), 309-322 (2012).
  2. Quail, D. F., Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine. 19 (11), 1423-1437 (2013).
  3. Hughes, C. S., Postovit, L. M., Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 10 (9), 1886-1890 (2010).
  4. LaBarge, M. A., et al. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integrative Biology (Cambridge). 1 (1), 70-79 (2009).
  5. Watson, S. S., et al. Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Systems. 6 (3), 329-342 (2018).
  6. Ranga, A., et al. 3D niche microarrays for systems-level analyses of cell fate. Nature Communications. 5, 4324 (2014).
  7. Malta, D. F. B., et al. Extracellular matrix microarrays to study inductive signaling for endoderm specification. Acta Biomater. 34, 30-40 (2016).
  8. Kamentsky, L., et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics. 27 (8), 1179-1180 (2011).
  9. Gagnon-Bartsch, J. A., Jacob, L., Speed, T. P. Removing Unwanted Variation from High Dimensional Data with Negative Controls. University of California, Berkeley, Department of Statistics, University of California, Berkeley. , (2013).
  10. Allan, C., et al. OMERO: flexible, model-driven data management for experimental biology. Nature Methods. 9 (3), 245-253 (2012).
  11. Simian, M., Bissell, M. J. Organoids: A historical perspective of thinking in three dimensions. Journal of Cell Biology. 216 (1), 31-40 (2017).
  12. Bissell, M. J. The differentiated state of normal and malignant cells or how to define a “normal” cell in culture. International Review of Cytology. 70, 27-100 (1981).
  13. Serban, M. A., Prestwich, G. D. Modular extracellular matrices: solutions for the puzzle. Methods. 45 (1), 93-98 (2008).
  14. Kaylan, K. B., et al. Mapping lung tumor cell drug responses as a function of matrix context and genotype using cell microarrays. Integrative Biology (Cambridge). 8 (12), 1221-1231 (2016).
  15. Lin, C. H., Jokela, T., Gray, J., LaBarge, M. A. Combinatorial Microenvironments Impose a Continuum of Cellular Responses to a Single Pathway-Targeted Anti-cancer Compound. Cell Reports. 21 (2), 533-545 (2017).
  16. Gjorevski, N., et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 539 (7630), 560-564 (2016).
check_url/it/58957?article_type=t

Play Video

Citazione di questo articolo
Smith, R., Devlin, K., Kilburn, D., Gross, S., Sudar, D., Bucher, E., Nederlof, M., Dane, M., Gray, J. W., Heiser, L., Korkola, J. E. Using Microarrays to Interrogate Microenvironmental Impact on Cellular Phenotypes in Cancer. J. Vis. Exp. (147), e58957, doi:10.3791/58957 (2019).

View Video