Summary

Surgical Size Reduction of Zebrafish for the Study of Embryonic Pattern Scaling

Published: May 03, 2019
doi:

Summary

Here, we describe a method for reducing the size of zebrafish embryos without disrupting normal developmental processes. This technique enables the study of pattern scaling and developmental robustness against size change.

Abstract

In the developmental process, embryos exhibit a remarkable ability to match their body pattern to their body size; their body proportion is maintained even in embryos that are larger or smaller, within certain limits. Although this phenomenon of scaling has attracted attention for over a century, understanding the underlying mechanisms has been limited, owing in part to a lack of quantitative description of developmental dynamics in embryos of varied sizes. To overcome this limitation, we developed a new technique to surgically reduce the size of zebrafish embryos, which have great advantages for in vivo live imaging. We demonstrate that after balanced removal of cells and yolk at the blastula stage in separate steps, embryos can quickly recover under the right conditions and develop into smaller but otherwise normal embryos. Since this technique does not require special equipment, it is easily adaptable, and can be used to study a wide range of scaling problems, including robustness of morphogen mediated patterning. 

Introduction

Scientists have long known that embryos have a remarkable ability to form constant body proportions although embryo size can vary greatly both under natural and experimental conditions1,2,3. Despite decades of theoretical and experimental studies, this robustness to size variation, termed scaling, and its underlying mechanisms remain unknown in many tissues and organs. In order to directly capture the dynamics of the developing system, we established a reproducible and simple size reduction technique in zebrafish4, which has the great advantage in in vivo live imaging5.

Zebrafish has served as a model vertebrate animal to study multiple disciplines of biology, including developmental biology. In particular, zebrafish is ideal for in vivo live imaging6 because 1) development can proceed normally outside the mother and the egg shell, and 2) the embryos are transparent. In addition, the embryos can withstand some temperature and environmental fluctuations, which allows them to be studied in laboratory conditions. Also, in addition to conventional gene expression perturbation by morpholino and mRNA injection7,8, recent advances in CRISPR/Cas9 technology has made reverse genetics in zebrafish highly efficient9. Furthermore, many classical techniques in embryology, such as cell transplantation or tissue surgery can be applied4,10,11.

Size reduction techniques were originally developed in amphibian and other non-vertebrate animals12. For example, in Xenopus laevis, another popular vertebrate animal model, bisection along the animal-vegetal axis at blastula stage can produce size-reduced embryos12,13. However, in our hands this one-step approach results in dorsalized or ventralized embryos in zebrafish, presumably because dorsal determinants are distributed unevenly and one cannot know their localization from the morphology of embryos. Here we demonstrate an alternative two-step chopping technique for zebrafish that produces normally developing but smaller embryos. With this technique, cells are first removed from the animal pole, a region of naïve cells lacking in organizer activity. To balance the amount of yolk and cells, which is important for epiboly and subsequent morphogenesis, yolk is then removed. Here, we detail this protocol and provide two examples of size invariance in pattern formation; somite formation and ventral neural tube patterning. Combined with quantitative imaging, we utilized the size reduction technique to examine the how the sizes of somites and neural tube are affected in size reduced embryos.

Protocol

All fish-related procedures were carried out with the approval of the Institutional Animal Care and Use Committee (IACUC) at Harvard Medical School. 1. Tool and Reagent Preparation Make a wire loop to chop embryos Take 20 cm of stainless steel wire that is stiff and non-corrosive with a diameter of 40 μm. Loop the wire through into glass capillary (1.0 mm outer diameter, 0.5 mm inner diameter, no filament), making a small loop at t…

Representative Results

Yolk volume reduction is important for normal morphology As recently described in Almuedo-Castillo et al.17, size reduction of embryos can be achieved without reducing yolk volume. To compare with and without yolk volume reduction, we performed both two-step chopping (both blastula and yolk) and blastula-only chopping (Figure 2 and Supplemental Movie 1). Two-step chopped embryos showed seemingly normal overall morphology compare…

Discussion

Historically, among vertebrate animals, size reduction has been mainly performed using amphibian embryos, by bisecting the embryos along animal-vegetal axis at a blastula stage12. However, there are mainly two differences between frog and zebrafish embryos when we bisect embryos. First, at the stage when zebrafish embryos become tolerant of bisecting (blastula stage), the organizer is located in a restricted area of blastula margin18,

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The work was supported by the PRESTO program of the Japan Science and Technology Agency (JPMJPR11AA)  and a National Institutes of Health grant (R01GM107733).

Materials

60 mm PYREX Petri dish CORNING  3160-60
Agarose affymetrix 75817 For making a mount for live imaging
Agarose, low gelling temperature Type VII-A SIGMA-ALDRICH A0701-25G
CaCl2 EMD CX0130-1 For 1/3 Ringer's solution
CaSO4 For egg water
Cover slip (25 mm x 25 mm, Thickness 1) CORNING 2845-25
Disposable Spatula VWR  80081-188
Foam board ELMER'S 951300 For microscope incubator
Forcept (No 55) FST 11255-20
Glass pipette VWR 14673-043
HEPES SIGMA Life Science H4034 For 1/3 Ringer's solution
INCUKIT XL for Cabinet Incubators INCUBATOR Warehouse.com For microscope incubator
Instant sea salt Instant Ocean 138510 For egg water
KCl SIGMA-ALDRICH P4504 For 1/3 Ringer's solution
Methyl cellulose SIGMA-ALDRICH M0387-100G
NaCl SIGMA-ALDRICH S7653 For 1/3 Ringer's solution
Petri dish Falcon 351029 For making a mount for live imaging
Phenol red SIGMA Life Science P0290
Pipette pump BEL-ART PRODUCTS F37898
Pronase EMD Millipore Corp 53702-250KU
Tricaine-S (MS222) WESTERN CHEMICAL INC NC0135573
Ultra thin bright annealed 316L dia. 0.035 mm Stainless Steel Weaving Wires Sandra The wire we used was obtained ~20 years ago and we could not find exactly the same one. This product has the same material and diameter as the one we use.

Riferimenti

  1. Cooke, J. Scale of body pattern adjusts to available cell number in amphibian embryos. Nature. 290, 775-778 (1981).
  2. Driesch, H. Entwicklungsmechanische Studien: I. Der Werthe der beiden ersten Furchungszellen in der Echinogdermenentwicklung. Experimentelle Erzeugung von Theil- und Doppelbildungen. Zeitschrift fur wissenschaftliche Zoologie. , (1892).
  3. Morgan, T. H. Half embryos and whole embryos from one of the first two blastomeres. Anatomischer Anzeiger. 10, 623-638 (1895).
  4. Ishimatsu, K., et al. Size-reduced embryos reveal a gradient scaling-based mechanism for zebrafish somite formation. Development. 145, (2018).
  5. Megason, S. G. In toto imaging of embryogenesis with confocal time-lapse microscopy. Methods in Molecular Biology. 546, 317-332 (2009).
  6. Graeden, E., Sive, H. Live imaging of the zebrafish embryonic brain by confocal microscopy. Journal of Visualized Experiments. (26), e1217 (2009).
  7. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of zebrafish embryos to analyze gene function. Journal of Visualized Experiments. (25), e1115 (2009).
  8. Yuan, S., Sun, Z. Microinjection of mRNA and morpholino antisense oligonucleotides in zebrafish embryos. Journal of Visualized Experiments. (27), e1113 (2009).
  9. Sorlien, E. L., Witucki, M. A., Ogas, J. Efficient Production and Identification of CRISPR/Cas9-generated Gene Knockouts in the Model System Danio rerio. Journal of Visualized Experiments. (138), e56969 (2018).
  10. Kemp, H. A., Carmany-Rampey, A., Moens, C. Generating chimeric zebrafish embryos by transplantation. Journal of Visualized Experiments. (29), e1394 (2009).
  11. Mizuno, T., Shinya, M., Takeda, H. Cell and tissue transplantation in zebrafish embryos. Methods in Molecular Biology. 127, 15-28 (1999).
  12. Cooke, J. Control of somite number during morphogenesis of a vertebrate, Xenopus laevis. Nature. 254, 196-199 (1975).
  13. Inomata, H., Shibata, T., Haraguchi, T., Sasai, Y. Scaling of dorsal-ventral patterning by embryo size-dependent degradation of Spemann’s organizer signals. Cell. 153, 1296-1311 (2013).
  14. Gomez, C., et al. Control of segment number in vertebrate embryos. Nature. 454, 335-339 (2008).
  15. Lauschke, V. M., Tsiairis, C. D., Francois, P., Aulehla, A. Scaling of embryonic patterning based on phase-gradient encoding. Nature. 493, 101-105 (2013).
  16. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9, 676-682 (2012).
  17. Almuedo-Castillo, M., et al. Scale-invariant patterning by size-dependent inhibition of Nodal signalling. Nature Cell Biology. 20, 1032-1042 (2018).
  18. Koos, D. S., Ho, R. K. The nieuwkoid gene characterizes and mediates a Nieuwkoop-center-like activity in the zebrafish. Current Biology. 8, 1199-1206 (1998).
  19. Yamanaka, Y., et al. A novel homeobox gene, dharma, can induce the organizer in a non-cell-autonomous manner. Genes and Development. 12, 2345-2353 (1998).
  20. Jesuthasan, S., Stahle, U. Dynamic microtubules and specification of the zebrafish embryonic axis. Current Biology. 7, 31-42 (1997).
  21. Schier, A. F., Talbot, W. S. The zebrafish organizer. Current Opinion in Genetics and Development. 8, 464-471 (1998).
check_url/it/59434?article_type=t

Play Video

Citazione di questo articolo
Ishimatsu, K., Cha, A., Collins, Z. M., Megason, S. G. Surgical Size Reduction of Zebrafish for the Study of Embryonic Pattern Scaling. J. Vis. Exp. (147), e59434, doi:10.3791/59434 (2019).

View Video