Summary

气相臭受体活化的实时体外监测

Published: April 23, 2019
doi:

Summary

从生理上讲, 气味受体是由在气相中吸入的气味分子激活的。然而, 大多数体外系统使用液相气味刺激。在这里, 我们提出了一种方法, 允许实时体外监测气味受体激活对气味刺激在气相。

Abstract

嗅觉感知始于气味与嗅觉感觉神经元 (OSN) 表达的气味受体 (OR) 的相互作用。气味识别遵循组合编码方案, 其中一个 OR 可以由一组气味激活, 一个气味可以激活 Or 的组合。通过这种组合编码, 生物体可以检测和区分无数的挥发性气味分子。因此, 在给定浓度下的气味可以用 Or 的激活模式来描述, 这是指每个气味所特有的。从这个意义上说, 破解大脑用来感知气味的机制需要理解气味或相互作用。这就是为什么嗅觉社区致力于 “去孤儿” 这些受体。传统的体外系统用于识别气味或相互作用, 使用了与气味的培养细胞介质, 这与自然检测气味的自然检测通过蒸汽气味溶解到鼻黏膜之前与 ORs。在这里, 我们描述了一种新的方法, 允许实时监测或激活通过气相气味。我们的方法依赖于使用光泽度测定的发光方法来测量 cAMP 释放。它弥合了目前体内和体外方法之间的差距, 并为仿生挥发性化学传感器提供了基础。

Introduction

嗅觉使陆地动物能够与它们易挥发的化学环境相互作用, 从而激发行为和情绪。从根本上说, 气味检测过程始于气味分子与嗅觉系统的第一次相互作用, 达到气味受体 (ORs)水平1。在哺乳动物中, Or 在位于嗅觉上皮2中的嗅觉感觉神经元 (Osn) 中单独表达.它们属于 g 蛋白偶联受体 (GPCR) 家族, 更精确地属于罗多普素类亚家族 (也称为 a 类)。ORs 与刺激 g 蛋白 G f结合, 其激活导致 camp 产生, 然后打开循环核苷酸门控通道和动作电位的产生。人们承认, 气味感知依赖于激活 ors3, 4 的特定模式, 因此气味识别遵循组合编码方案, 其中一个 or 可以被一组气味激活, 一个气味可以激活运算。通过这种组合编码, 人们假设生物体可以检测并区分无数挥发性气味分子。了解气味是如何被感知的关键之一是了解如何以及哪些 ORs 是由给定的气味激活的。

为了阐明气味或相互作用, 体外功能检测发挥了至关重要的作用。通过使用各种体外、体外和体内功能检测 5, 6, 7, 鉴定孤儿的激动剂气味配体 (or 去孤儿) 是一个非常活跃的领域. , 8,9,10,11,12, 13,14, 15,16, 17岁

体外检测系统最适合于 Or 的详细功能表征, 包括识别 Or 的功能域和关键残基, 以及潜在的工程应用。然而, 进一步开发有价值的 ORs 体外系统一直是一个挑战, 部分原因是难以培养 Osn 和在异源细胞中的 ORs 的功能表达。第一个挑战是建立协议, 允许在气味或相互作用的映射中表达功能 Or 的细胞表面。一些独立小组采用了各种办法56789、101112 14,18,19,20。K拿特沃斯特等人在标记为 ors n 端的结果中, 用缩短的视紫红质 (rhor 标记) 序列, 观察到人类胚胎肾 (HEK) 细胞13的表面表达得到改善。对附加到 or 序列的标记所做的更改仍然是为改进 or 表达式和功能1921 而探索的路径。Saito 等人随后确定了促进或贩运的受体转运蛋白 1 (rtp1) 和 RTP2。22一个较短的 RTP1 版本, 称为 RTP1S, 也被证明比原来的蛋白质23更有效。稳定表达 g f、reep1、RTP1 和 RTP2 24的细胞系 (Hana3A) 的发展, 再加上使用环状单磷酸腺苷 (camp) 记者, 可以识别气味或相互作用.RTP 系列蛋白质促进 ors 细胞表面表达的机制仍有待确定。

这些既定的方法之一是, 他们依靠在液相气味刺激, 这意味着气味是预先溶解到刺激介质, 并通过取代培养基刺激细胞。这与气味分子在气相到达嗅觉上皮并通过溶解到鼻黏膜中激活 Or 的生理条件有很大的不同。为了更接近生理相关的刺激暴露, Sanz 等20 提出了一种基于蒸汽刺激的方法, 应用一滴气味溶液挂在放置在细胞井顶部的塑料薄膜的内脸下。他们通过监测荧光强度记录钙的反应。这种方法是首次使用气相气味刺激, 但它不允许大的筛选 OR 激活。

在这里, 我们开发了一种新的方法, 通过光泽度分析, 可以通过气相气味刺激实时监测体外或体外激活 (图 1)。这种检测方法以前曾用于液体气味刺激18,19,25,26, 27,28, 29,30,31. 在平板读数之前, 发光计的监测室首先与蒸发气味平衡 (图 1a)。然后将气味分子溶解到缓冲液中, 沐浴表示有兴趣的 Or、RTP1S 和光泽细胞蛋白的 Hana3A 细胞 (图 1b)。如果气味剂是 OR 的激动剂, OR 将切换到激活的构象并绑定 Gf,激活腺苷环化酶 (ac), 并最终导致 camp 水平上升。这种上升的 cAMP 将结合和激活光泽蛋白, 产生发光催化荧光素。然后, 该发光被测光仪记录, 并启用或激活监测。这种方法在 OR 脱非的背景下引起了极大的兴趣, 因为它使体外系统更接近于气味的自然感知。

Protocol

1. Hana3A 细胞培养 制备 M10 (最小必需培养基 (MEM) 加 10% v/v 胎儿牛血清 (FBS)) 和 M10PSF (M10 + 100μgml penicilin 链霉素和1.25μgml 两性霉素 B)。 在37°c 和5% 二氧化碳 (CO 2) 的孵化器中, 在100毫米细胞培养盘中培养 M10PSF 10 毫升中的细胞. 每2天以20% 的比例分割细胞: 当在相对照显微镜下观察到100% 的细胞融合 (约 1.1 x 10 7 细胞) 时, 渴望培养基, 并用10毫升磷酸盐缓冲盐水 (pb…

Representative Results

我们用肉桂醛蒸汽刺激筛选了三个小鼠 ORs 的反应, Olfr746、Olfr124 和 Olfr746 (图 3)。同时, 我们使用空矢量控制 (Rho-pCI) 来确保被测试的 Or 的气味诱导的活动是特定的 (图 3a)。在20个测量周期中监测了蒸汽气味刺激下的 ORs 实时激活情况。每个井的数据首先被归一化为每个周期的空矢量控制平均值 (图 3b)。需?…

Discussion

气味的感知从根本上取决于 ORs 的激活。因此, 需要了解它们的功能, 以破解大脑用来感知其挥发性化学环境的复杂机制。然而, 由于难以建立一个可靠的方法来筛选 OR 曲目的功能, 以防止在体外的气味, 这阻碍了对这一过程的理解.通过创建标记受体1319以及发现和优化 osn22中表达的受体-运输蛋白 (rtp), 部分解决了 or 的细胞表面?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家卫生研究院 (DC014423 和 DC016224) 和国防高级研究项目机构现实鼻子项目的赠款。YF 留在杜克大学, 得到 JPS 推进战略国际网络以加快人才培养人员流通的财政支持 (R2801)。我们感谢萨哈尔·卡莱姆编辑的手稿。

Materials

0.05 % trypsin-EDTA Gibco 25300-054 0.05% Trypsin – EDTA (1x), phenol red – store at 4°C
100 mm cell culture dish  BD Falcon 353003 100 mm x 20 mm cell culture dish 
15 mL tube BD Falcon 352099 17 mm x 120 mm conical tubes
96-well plate Corning 3843 96 well, with LE lid white with clear bottom Poly-D-lysine coated Polystyrene
Amphotericin Gibco 15290-018 Amphotericin B 250 µg/mL – store at 4°C
centrifuge machine Jouan C312 Centrifuge machine with swinging bucket rotor for 15 mL
Class II Type A/B3 fumehood NUAIRE NU-407-500 fumehood for cell culturing
FBS Gibco 16000-044 Fetal Bovine Serum – store at -20°C
GloSensor cAMP Reagent Promega E1290 GloSensor cAMP Reagent luminescent protein substrate – store at -20°C
Incubator 37 °C; 5 % CO2 Fisher Scientific 11-676-604 Incubator for cell culturing
Lipofectamine 2000 reagent Invitrogen 11668-019 Lipofectamine 2000 Reagent 1mg/ml transfection reagent – store at 4°C
Luminometer POLARstar OPTIMA BMG LABTECH discontinued 96 well plate reader for luminescence
Mineral oil Sigma M8410 Solvent for odorants – store at room temperature
Minimum Essential Medium (MEM) Corning cellgro 10-010-CV Minimum Essential Medium Eagle with Earle’s salts & L-glutamine – store at 4°C
Penicillin/Streptomycin Sigma Aldrich P4333 Penicillin-Streptomycin solution stabilized with 10,000 U of penicillin and 10 mg streptomycin – store at -20°C
pGlosensor Promega E2301 pGloSensor-22F cAMP luminescent protein plasmid – store at 4°C
phase contrast microscope Leica 090-131.001 phase contrast microscope with x4, x10, x20 objectives
RTP1S H. Matsunami lab 100 ng/µL plasmid – store at 4°C

Riferimenti

  1. Buck, L., Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 65 (1), 175-187 (1991).
  2. Serizawa, S., Miyamichi, K., Sakano, H. One neuron-one receptor rule in the mouse olfactory system. Trends in Genetics. 20 (12), 648-653 (2004).
  3. Malnic, B., Hirono, J., Sato, T., Buck, L. B. Combinatorial receptor codes for odors. Cell. 96 (5), 713-723 (1999).
  4. Hallem, E. A., Carlson, J. R. Coding of odors by a receptor repertoire. Cell. 125 (1), 143-160 (2006).
  5. Peterlin, Z., Firestein, S., Rogers, M. E. The state of the art of odorant receptor deorphanization: a report from the orphanage. The Journal of General Physiology. 143 (5), 527-542 (2014).
  6. Saito, H., Chi, Q., Zhuang, H., Matsunami, H., Mainland, J. D. Odor coding by a Mammalian receptor repertoire. Science Signal. 2 (60), (2009).
  7. Geithe, C., Noe, F., Kreissl, J., Krautwurst, D. The broadly tuned odorant receptor OR1A1 is highly selective for 3-methyl-2, 4-nonanedione, a key food odorant in aged wines, tea, and other foods. Chemical Senses. 42 (3), 181-193 (2017).
  8. Nishizumi, H., Sakano, H. Decoding and deorphanizing an olfactory map. Nature Neuroscience. 18 (10), 1432 (2015).
  9. Wetzel, C. H., et al. Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proceedings of the National Academy of Sciences. 98 (16), 9377-9380 (2001).
  10. Touhara, K., et al. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proceedings of the National Academy of Sciences. 96 (7), 4040-4045 (1999).
  11. Levasseur, G., et al. Ligand-specific dose-response of heterologously expressed olfactory receptors. European Journal Of Biochemistry. 270 (13), 2905-2912 (2003).
  12. Zhao, H., et al. Functional expression of a mammalian odorant receptor. Science. 279 (5348), 237-242 (1998).
  13. Krautwurst, D., Yau, K. -. W., Reed, R. R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell. 95 (7), 917-926 (1998).
  14. Wetzel, C. H., et al. Specificity and Sensitivity of a Human Olfactory Receptor Functionally Expressed in Human Embryonic Kidney 293 Cells andXenopus Laevis Oocytes. Journal of Neuroscience. 19 (17), 7426-7433 (1999).
  15. Kajiya, K., et al. Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. Journal of Neuroscience. 21 (16), 6018-6025 (2001).
  16. Jiang, Y., et al. Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo. Nature Neuroscience. 18 (10), 1446 (2015).
  17. Von Der Weid, B., et al. Large-scale transcriptional profiling of chemosensory neurons identifies receptor-ligand pairs in vivo. Nature Neuroscience. 18 (10), 1455 (2015).
  18. Geithe, C., Andersen, G., Malki, A., Krautwurst, D. A butter aroma recombinate activates human class-I odorant receptors. Journal of Agricultural and Food Chemistry. 63 (43), 9410-9420 (2015).
  19. Noe, F., et al. IL-6-HaloTag® enables live-cell plasma membrane staining, flow cytometry, functional expression, and de-orphaning of recombinant odorant receptors. Journal of Biological Methods. 4 (4), 81 (2017).
  20. Sanz, G., Schlegel, C., Pernollet, J. -. C., Briand, L. Comparison of odorant specificity of two human olfactory receptors from different phylogenetic classes and evidence for antagonism. Chemical Senses. 30 (1), 69-80 (2005).
  21. Shepard, B. D., Natarajan, N., Protzko, R. J., Acres, O. W., Pluznick, J. L. A cleavable N-terminal signal peptide promotes widespread olfactory receptor surface expression in HEK293T cells. PLoS One. 8 (7), 68758 (2013).
  22. Saito, H., Kubota, M., Roberts, R. W., Chi, Q., Matsunami, H. RTP family members induce functional expression of mammalian odorant receptors. Cell. 119 (5), 679-691 (2004).
  23. Wu, L., Pan, Y., Chen, G. -. Q., Matsunami, H., Zhuang, H. Receptor-Transporting Protein 1 Short (RTP1S) Mediates the Translocation and Activation of Odorant Receptors by Acting through Multiple Steps. Journal of Biological Chemistry. , (2012).
  24. Zhuang, H., Matsunami, H. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nature Protocols. 3 (9), 1402 (2008).
  25. Zhang, Y., Pan, Y., Matsunami, H., Zhuang, H. Live-cell Measurement of Odorant Receptor Activation Using a Real-time cAMP Assay. Journal of Visualized Experiments. (128), e55831 (2017).
  26. Li, S., et al. Smelling sulfur: Copper and silver regulate the response of human odorant receptor OR2T11 to low-molecular-weight thiols. Journal of the American Chemical Society. 138 (40), 13281-13288 (2016).
  27. Ahmed, L., et al. Molecular mechanism of activation of human musk receptors OR5AN1 and OR1A1 by (R)-muscone and diverse other musk-smelling compounds. Proceedings of the National Academy of Sciences. 115 (17), 3950-3958 (2018).
  28. Duan, X., et al. Crucial role of copper in detection of metal-coordinating odorants. Proceedings of the National Academy of Sciences. 109 (9), 3492-3497 (2012).
  29. Sekharan, S., et al. QM/MM model of the mouse olfactory receptor MOR244-3 validated by site-directed mutagenesis experiments. Biophysical journal. 107 (5), 5-8 (2014).
  30. Liu, M. T., et al. Carbon chain shape selectivity by the mouse olfactory receptor OR-I7. Organic & Biomolecular Chemistry. 16 (14), 2541-2548 (2018).
  31. Li, Y., et al. Aldehyde Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry. ACS Chemical Biology. 9 (11), 2563-2571 (2014).
  32. Kida, H., et al. Vapor detection and discrimination with a panel of odorant receptors. Nature Communications. 9 (1), 4556 (2018).
  33. Yu, Y., et al. Responsiveness of G protein-coupled odorant receptors is partially attributed to the activation mechanism. Proceedings of the National Academy of Sciences. 112 (48), 14966-14971 (2015).
  34. de March, C. A., et al. Conserved residues control Activation of mammalian G protein-coupled odorant receptors. Journal of the American Chemical Society. 137 (26), 8611-8616 (2015).
  35. de March, C. A., et al. Odorant receptor 7D4 activation dynamics. Angewandte Chemie. 130 (17), 4644-4648 (2018).
  36. Kim, S. -. K., Goddard, W. A. Predicted 3D structures of olfactory receptors with details of odorant binding to OR1G1. Journal of Computer-Aided Molecular Design. 28 (12), 1175-1190 (2014).
  37. de March, C. A., Kim, S. K., Antonczak, S., Goddard, W. A., Golebiowski, J. G protein-coupled odorant receptors: From sequence to structure. Protein Science. 24 (9), 1543-1548 (2015).
  38. Adipietro, K. A., Mainland, J. D., Matsunami, H. Functional evolution of mammalian odorant receptors. PLoS Genetics. 8 (7), 1002821 (2012).
  39. Mainland, J. D., et al. The missense of smell: functional variability in the human odorant receptor repertoire. Nature Neuroscience. 17 (1), 114 (2014).
  40. Meister, M. On the dimensionality of odor space. Elife. 4, 07865 (2015).
  41. Bushdid, C., Magnasco, M. O., Vosshall, L. B., Keller, A. Humans can discriminate more than 1 trillion olfactory stimuli. Science. 343 (6177), 1370-1372 (2014).
  42. Gerkin, R. C., Castro, J. B. The number of olfactory stimuli that humans can discriminate is still unknown. Elife. 4, 08127 (2015).
  43. Shirasu, M., et al. Olfactory receptor and neural pathway responsible for highly selective sensing of musk odors. Neuron. 81 (1), 165-178 (2014).
  44. Keller, A., Zhuang, H., Chi, Q., Vosshall, L. B., Matsunami, H. Genetic variation in a human odorant receptor alters odour perception. Nature. 449 (7161), 468 (2007).
  45. McRae, J. F., et al. Genetic variation in the odorant receptor OR2J3 is associated with the ability to detect the “grassy” smelling odor, cis-3-hexen-1-ol. Chemical Senses. 37 (7), 585-593 (2012).
  46. de March, C. A., Ryu, S., Sicard, G., Moon, C., Golebiowski, J. Structure-odour relationships reviewed in the postgenomic era. Flavour and Fragrance Journal. 30 (5), 342-361 (2015).
  47. Olson, M. J., Martin, J. L., LaRosa, A. C., Brady, A. N., Pohl, L. R. Immunohistochemical localization of carboxylesterase in the nasal mucosa of rats. Journal of Histochemistry & Cytochemistry. 41 (2), 307-311 (1993).
  48. Nagashima, A., Touhara, K. Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception. Journal of Neuroscience. 30 (48), 16391-16398 (2010).
check_url/it/59446?article_type=t

Play Video

Citazione di questo articolo
de March, C. A., Fukutani, Y., Vihani, A., Kida, H., Matsunami, H. Real-time In Vitro Monitoring of Odorant Receptor Activation by an Odorant in the Vapor Phase. J. Vis. Exp. (146), e59446, doi:10.3791/59446 (2019).

View Video