Summary

Determinação das Relações de Auto e Inter-(in)compatibilidade em Damasco combinando polinização manual, microscopia e análises genéticas

Published: June 16, 2020
doi:

Summary

Apresentamos uma metodologia para estabelecer os requisitos de polinização das cultivares de damasco(Prunus armeniaca L.) combinando a determinação da auto-(in)compatibilidade por microscopia de fluorescência com a identificação do S-genótipo pela análise pcr.

Abstract

A autoincompatibilidade em Rosaceae é determinada por um Sistema de Autoincompatibilidade Gametofitic (GSI) que é controlado principalmente pelo lócus multiloelico S. No damasco, a determinação das relações de auto e inter-(in)compatibilidade é cada vez mais importante, uma vez que a liberação de um importante número de novas cultivares resultou no aumento de cultivares com requisitos desconhecidos de polinização. Aqui, descrevemos uma metodologia que combina a determinação da auto-(in)compatibilidade por polinizações manuais e microscopia com a identificação do genótipo Spela análise pcr. Para a determinação de auto-(in)compatibilidade, foram coletadas flores em fase de balão de cada cultivar no campo, polinizado à mão em laboratório, fixado e manchado com azul anilina para observação do comportamento do tubo de pólen sob a microscopia de fluorescência. Para o estabelecimento de relações de incompatibilidade entre cultivares, o DNA Sde cada cultivar foi extraído de folhas jovens e S-alelos foram identificados pela PCR. Essa abordagem permite estabelecer grupos de incompatibilidade e elucidar relações de incompatibilidade entre cultivares, o que fornece informações valiosas para escolher polinizadores adequados na concepção de novos pomares e selecionar pais apropriados em programas de reprodução.

Introduction

A autoincompatibilidade é uma estratégia de floração das plantas para prevenir a auto polinização e promover o outcrossing1. Em Rosaceae, esse mecanismo é determinado por um Sistema de Autoincompatibilidade Gametofitic (GSI) que é controlado principalmente pelo lócus multitélico S2. No estilo, o gene RNase codifica o determinante S-stylar, um RNase3, enquanto uma proteína F-box, que determina o determinante do pólen S,é codificada pelo gene SFB 4. A interação de autoincompatibilidade ocorre através da inibição do crescimento do tubo de pólen ao longo do estilo que impede a fertilização do ovule5,6.

No damasco, uma renovação varietal ocorreu em todo o mundo nas últimas duas décadas7,8. Essa introdução de um importante número de novas cultivares, de diferentes programas de reprodução pública e privada, resultou no aumento de cultivares de damasco com requisitos desconhecidos de polinização8.

Diferentes metodologias têm sido usadas para determinar os requisitos de polinização em damasco. No campo, a auto-compatibilidade pode ser estabelecida por polinização controlada em árvores enjauladas ou em flores emasculadas e,posteriormente,registrando o percentual de conjunto de frutas9,10,,11,12. Além disso, polinizações controladas têm sido realizadas em laboratório pela cultura semi-in vivo de flores e análise do comportamento do tubo de pólen sob microscopia de fluorescência8,,13,,14,,15,,16,17. Recentemente, técnicas moleculares, como análise e sequenciamento de PCR, permitiram a caracterização de relações de incompatibilidade com base no estudo dos genes RNase e SFB 18,19. No damasco, foram relatados 33 S-alelos(S1 a S20, S22 a S30, S52, S53, Sv, Sx), incluindo um alelo relacionado com auto-compatibilidade(Sc)12, 18,,18,20,,21,,22,,23,,24. Até agora, 26 grupos de incompatibilidade foram estabelecidos nesta espécie de acordo com o S-genótipo8,9,17,25,26,27. Cultivares com os mesmos alelos Ssão intercompatíveis, enquanto cultivares com pelo menos um s-alelodiferente e, consequentemente, alocados em diferentes grupos incompatíveis, são intercompatíveis.

Para definir os requisitos de polinização das cultivares de damasco, descrevemos uma metodologia que combina a determinação da auto-(in)compatibilidade por microscopia de fluorescência com a identificação do genótipo Spela análise pcr em cultivares de damasco. Essa abordagem permite estabelecer grupos de incompatibilidade e elucidar relações de incompatibilidade entre cultivares.

Protocol

1. Determinação de auto-(in)compatibilidade Prove as flores no campo. É necessário coletar as flores no estágio do balão(Figura 1A),correspondente ao estágio 58 na escala BBCH para damasco28, para evitar polinização prévia indesejada. Polinizações auto e cruzadas em laboratório Retire os anteratos das flores no estágio do balão e coloque-os em um pedaço de papel para secar à temperatura …

Representative Results

Estudos de polinização em damasco exigem o uso de flores na fase final do balão um dia antes da anestesia (Figura 1A). Esta etapa é considerada a mais favorável tanto para a coleta de pólen quanto para pistil, uma vez que as estruturas florais estão quase maduras, mas a deshiscência anther ainda não ocorreu. Isso evita a interferência de pólen indesejado, não só de pólen da mesma flor, mas também de outras flores, uma vez que as pétalas fechadas impedem a che…

Discussion

Tradicionalmente, a maioria das cultivares europeias de damasco comercial eram autocompatíveis36. No entanto, o uso de cultivares autocompatíveis norte-americanas como pais em programas de reprodução nas últimas décadas resultou na liberação de um número crescente de novas cultivares auto-incompatíveis com requisitos de polinização desconhecidos7,,8,,37. Assim, a determinação das relações …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Esta pesquisa foi financiada pelo Ministerio de Ciencia, Innovación y Universidades-European Regional Development Fund, União Europeia (AGL2016-77267-R e AGL2015-74071-JIN); Instituto Nacional de Investigação y Tecnología Agraria y Alimentaria (RFP2015-00015-00, RTA2017-00003-000); Gobierno de Aragón-European Social Fund, União Europeia (Grupo Consolidado A12_17R), Fundação Biodiversidad e Agroseguro S.A.

Materials

Agarose D1 Low EEO Conda 8010.22
BIOTAQ DNA Polymerase kit Bioline BIO-21060
Bright field microscope Leica Microsystems DM2500
CEQ System Software Beckman Coulter
DNeasy Plant Mini Kit QIAGEN 69106
dNTP Set, 4 x 25 µmol Bioline BIO-39025
GenomeLab DNA Size Standard Kit – 400 Beckman Coulter 608098
GenomeLab GeXP Genetic Analysis System Beckman Coulter
GenomeLab Separation Buffer Beckman Coulter 608012
GenomeLab Separation Gel LPA-1 Beckman Coulter 391438
HyperLadder 100bp Bioline BIO-33029
HyperLadder 1kb Bioline BIO-33025
Image Analysis System Leica Microsystems
Molecular Imager VersaDoc MP 4000 system  Bio-Rad 170-8640
NanoDrop One Spectrophotometer Thermo Fisher Scientific 13-400-518
pH-Meter BASIC 20 Crison
Phusion High-Fidelity PCR Kit Thermo Fisher Scientific F553S
Power Pack P 25 T Biometra
Primer Forward Isogen Life Science
Primer Reverse Isogen Life Science
Quantity One Software Bio-Rad
Stereoscopic microscope Leica Microsystems MZ-16
Sub-Cell GT Bio-Rad
SYBR Safe DNA Gel Stain Thermo Fisher Scientific S33102
T100 Thermal Cycler Bio-Rad 1861096
Taq DNA Polymerase QIAGEN 201203
Vertical Stand Autoclave JP Selecta

Riferimenti

  1. Silva, N. F., Goring, D. R. Mechanisms of self-incompatibility in flowering plants. Cellular and Molecular Life Sciences. 58, 1988-2007 (2001).
  2. Charlesworth, D., Vekemans, X., Castric, V., Glémin, S. Plant self-incompatibility systems: A molecular evolutionary perspective. New phytologist. 168, 61-69 (2005).
  3. Tao, R., et al. Identification of stylar RNases associated with gametophytic self-incompatibility in almond (Prunus dulcis). Plant and Cell Physiology. 38, 304-311 (1997).
  4. Ushijima, K., et al. Structural and transcriptional analysis of the self-incompatibility locus of almond: Identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. The Plant cell. 15, 771-781 (2003).
  5. Bedinger, P. A., Broz, A. K., Tovar-Mendez, A., McClure, B. Pollen-Pistil Interactions and Their Role in Mate Selection. Plant Physiology. 173, 79-90 (2017).
  6. Guerra, M. E., Rodrigo, J. Japanese plum pollination: A review. Scientia Horticulturae. 197, 674-686 (2015).
  7. Zhebentyayeva, T., Ledbetter, C., Burgos, L., Llacer, G., Badenes, M. L., Byrne, D. Apricot. Fruit Breeding. , 415-458 (2012).
  8. Herrera, S., Lora, J., Hormaza, J. I., Herrero, M., Rodrigo, J. Optimizing Production in the New Generation of Apricot Cultivars: Self-incompatibility, S-RNase Allele Identification, and Incompatibility Group Assignment. Frontiers in Plant Science. 9, 527 (2018).
  9. Egea, J., Burgos, L. Detecting Cross-incompatibility of Three North American Apricot Cultivars and Establishing the First Incompatibility Group in Apricot. Journal of the American Society for Horticultural Science. 121, 1002-1005 (1996).
  10. Rodrigo, J., Herrero, M. Effects of pre-blossom temperatures on flower development and fruit set in apricot. Scientia Horticulturae. 92, 125-135 (2002).
  11. Julian, C., Herrero, M., Rodrigo, J. Flower bud differentiation and development in fruiting and non-fruiting shoots in relation to fruit set in apricot (Prunus armeniaca). Trees. 24, 833-841 (2010).
  12. Muñoz-Sanz, J. V., Zuriaga, E., López, I., Badenes, M. L., Romero, C. Self-(in)compatibility in apricot germplasm is controlled by two major loci, S and M. BMC Plant Biology. 17, 82 (2017).
  13. Burgos, L., Berenguer, T., Egea, J. Self- and Cross-compatibility among Apricot Cultivars. HortScience. 28, 148-150 (1993).
  14. Rodrigo, J., Herrero, M. Evaluation of pollination as the cause of erratic fruit set in apricot “Moniqui”. Journal of Horticultural Science. 71, 801-805 (1996).
  15. Milatović, D., Nikolić, D., Krška, B. Testing of self-(in)compatibility in apricot cultivars from European breeding programmes. Horticultural Science. 40 (2), 65-71 (2013).
  16. Milatović, D., Nikolić, D., Fotirić-Aksić, M., Radović, A. Testing of self-(in)compatibility in apricot cultivars using fluorescence microscopy. Acta Scientiarum Polonorum, Hortorum Cultus. 12 (6), 103-113 (2013).
  17. Herrera, S., Rodrigo, J., Hormaza, J. I., Lora, J. Identification of Self-Incompatibility Alleles by Specific PCR Analysis and S-RNase Sequencing in Apricot. Int J Mol Sci. 19, 3612 (2018).
  18. Romero, C., et al. Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes. Plant Molecular Biology. 56, 145-157 (2004).
  19. Halász, J., Pedryc, A., Hegedus, A. Origin and dissemination of the pollen-part mutated SC haplotype which confers self-compatibility in apricot (Prunus armeniaca). New Phytologist. 176, 792-803 (2007).
  20. Halász, J., Hegedus, A., Hermán, R., Stefanovits-Bányai, &. #. 2. 0. 1. ;., Pedryc, A. New self-incompatibility alleles in apricot (Prunus armeniaca L.) revealed by stylar ribonuclease assay and S-PCR analysis. Euphytica. 145, 57-66 (2005).
  21. Vilanova, S., Romero, C., Llacer, G., Badenes, M. L., Burgos, L. Identification of Self-(in)compatibility Alleles in Apricot by PCR and Sequence Analysis. Journal of the American Society for Horticultural Science. 130, 893-898 (2005).
  22. Feng, J., et al. Detection and transcript expression of S-RNase gene associated with self-incompatibility in apricot (Prunus armeniaca L.). Molecular Biology Reports. 33, 215-221 (2006).
  23. Zhang, L., et al. Identification of self-incompatibility (S-) genotypes of Chinese apricot cultivars. Euphytica. 160, 241-248 (2008).
  24. Wu, J., et al. Identification of S-haplotype-specific S-RNase and SFB alleles in native Chinese apricot (Prunus armeniaca L). Journal of Horticultural Science and Biotechnology. 84, 645-652 (2009).
  25. Szabó, Z., Nyéki, J. Blossoming, fructification and combination of apricot varieties. Acta Horticulturae. 293, 295-302 (1991).
  26. Halász, J., Pedryc, A., Ercisli, S., Yilmaz, K. U., Hegedűs, A. S-genotyping supports the genetic relationships between Turkish and Hungarian apricot germplasm. Journal of the American Society for Horticultural Science. 135, 410-417 (2010).
  27. Lachkar, A., et al. Identification of self-(in)compatibility S-alleles and new cross-incompatibility groups in Tunisian apricot (Prunus armeniaca L.) cultivars. The Journal of Horticultural Science and Biotechnology. 88, 497-501 (2013).
  28. Pérez-Pastor, A., Ruiz-Sánchez, M. C., Domingo, R., Torrecillas, A. Growth and phenological stages of Búlida apricot trees in South-East. Agronomie. 24, 93-100 (2004).
  29. Williams, J. H., Friedman, W. E., Arnold, M. L. Developmental selection within the angiosperm style: using gamete DNA to visualize interspecific pollen competition. Proceedings of the National Academy of Sciences of the United States of America. 96, 9201-9206 (1999).
  30. Julian, C., Herrero, M., Rodrigo, J. Anther meiosis time is related to winter cold temperatures in apricot (Prunus armeniaca L.). Environmental and Experimental Botany. 100, 20-25 (2014).
  31. Guerra, M. E., López-Corrales, M., Wünsch, A., Rodrigo, J. Lack of Fruit Set Caused by Ovule Degeneration in Japanese Plum. Journal of the American Society for Horticultural Science. 136 (6), 375-381 (2011).
  32. Guerra, M. E., Wünsch, A., López-Corrales, M., Rodrigo, J. Flower Emasculation as the Cause for Lack of Fruit Set in Japanese Plum Crosses. Journal of the American Society for Horticultural Science. 135 (6), 556-562 (2010).
  33. Hormaza, J. I., Pinney, K., Polito, V. S. Correlation in the tolerance to ozone between sporophytes and male gametophytes of several fruit and nut tree species (Rosaceae). Sexual Plant Reproduction. 9, 44-48 (1996).
  34. Alcaraz, M. L., Hormaza, J. I., Rodrigo, J. Pistil Starch Reserves at Anthesis Correlate with Final Flower Fate in Avocado (Persea americana). PLOS ONE. 8 (10), 78467 (2013).
  35. Tao, R., et al. Molecular typing of S-alleles through Identification, Characterization and cDNA cloning for S-RNases in Sweet Cherry. Journal of the American Society for Horticultural Science. 124, 224-233 (1999).
  36. Burgos, L., et al. The self-compatibility trait of the main apricot cultivars and new selections from breeding programmes. Journal of Horticultural Science. 72, 147-154 (1997).
  37. Hormaza, J. I., Yamane, H., Rodrigo, J., Kole, C. Apricot. Genome Mapping and Molecular Breeding in Plants, Volume 4 Fruits and Nuts. , 171-187 (2007).
  38. Benmoussa, H., Ghrab, M., Ben Mimoun, M., Luedeling, E. Chilling and heat requirements for local and foreign almond (Prunus dulcis Mill.) cultivars in a warm Mediterranean location based on 30 years of phenology records. Agricultural and Forest Meteorology. 239, 34-46 (2017).
  39. Rodrigo, J., Herrero, M., Hormaza, J. I. Pistil traits and flower fate in apricot (Prunus armeniaca). Annals of Applied Biology. 154, 365-375 (2009).
  40. Williams, R. R., Williams, R. R., Wilson, D. Techniques used in fruit-set experiments. Towards Regulated Cropping. , 57-61 (1970).
  41. Sutherland, B. G., Robbins, T. P., Tobutt, K. R. Primers amplifying a range of Prunus S-alleles. Plant Breeding. 123, 582-584 (2004).
  42. Murray, M. G., Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research. 8, 4321-4325 (1980).
  43. Porebski, S., Bailey, L. G., Baum, B. R. Modification of a CTAB DNA Extraction Protocol for Plants Containing High Polysaccharide and Polyphenol Components. Plant Molecular Biology Reporter. 15 (1), 8-15 (1997).
  44. Rogers, S. O., Bendich, A. J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology. 5 (2), 69-76 (1985).
  45. Hormaza, J. I. Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theoretical and Applied Genetics. 104, 321-328 (2002).
  46. Sonneveld, T., Tobutt, K. R., Robbins, T. P. Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theoretical and Applied Genetics. 107, 1059-1070 (2003).
  47. Hegedus, A., Lénárt, J., Halász, J. Sexual incompatibility in Rosaceae fruit tree species: molecular interactions and evolutionary dynamics. Biologia Plantarum. 56 (2), 201-209 (2012).
  48. Fernández i Martí, A., Gradziel, T. M., Socias i Company, R. Methylation of the Sf locus in almond is associated with S-RNase loss of function. Plant Molecular Biology. 86, 681-689 (2014).
  49. Company, R. S. i., Kodad, O., Martí, A. F. i., Alonso, J. M. Mutations conferring self-compatibility in Prunus species: From deletions and insertions to epigenetic alterations. Scientia Horticulturae. 192, 125-131 (2015).
  50. Boskovic, R., Tobutt, K. R. Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica. 90, 245-250 (1996).
  51. Cachi, A. M., Wünsch, A. S-genotyping of sweet cherry varieties from Spain and S-locus diversity in Europe. Euphytica. 197 (2), 229-236 (2014).
  52. Zuriaga, E., et al. An S-locus Independent Pollen Factor Confers Self-Compatibility in “Katy” Apricot. PLoS ONE. 8 (1), 53947 (2013).
check_url/it/60241?article_type=t

Play Video

Citazione di questo articolo
Herrera, S., Lora, J., Hormaza, J. I., Rodrigo, J. Determination of Self- and Inter-(in)compatibility Relationships in Apricot Combining Hand-Pollination, Microscopy and Genetic Analyses. J. Vis. Exp. (160), e60241, doi:10.3791/60241 (2020).

View Video