Summary

小鼠胚胎干细胞体外神经元分化

Published: June 02, 2020
doi:

Summary

在这里,我们建立了一种低成本和易于操作的方法,将胚胎干细胞快速高效分化为神经元。该方法适用于实验室的推广,是神经学研究的有用工具。

Abstract

小鼠胚胎干细胞(mESCs)的神经分化是阐明神经生成的关键机制并可能有助于再生医学的潜在工具。在这里,我们建立了一种高效和低成本的神经元分化方法,从mESC体外 使用组合筛选的策略。根据此处定义的条件,2 天胚胎体形成 – 6 天视网膜酸诱导协议允许从 mESC 快速有效地分化为神经前体细胞 (NPC),如形成堆叠良好和中性状 A2lox 和 129 个内斯汀阳性衍生物所示。胚胎体的健康状态和使用网膜酸 (RA) 的时间点以及 RA 浓度在此过程中至关重要。在随后从NPC向神经元的分化中,N2B27中II(辅以神经基质介质)可以更好地支持神经元细胞的长期维持和成熟。该方法效率高、成本低、操作方便,是神经生物学和发育生物学研究的有力工具。

Introduction

胚胎干细胞(ESCs)是多能的,可以分化成神经前体细胞(NPC),随后在某些条件下进入神经元1。基于ESC的神经生成提供了模仿神经生成的最佳平台,从而作为发展生物学研究的有用工具,并可能有助于再生医学2,3。在过去的几十年里,许多诱导胚胎神经生成的策略被报道,如转基因方法4,使用小分子5,使用3D矩阵微环境6,和共生技术7。但是,这些协议大多条件有限或难以操作,因此不适合在大多数实验室中使用。

为了找到一种操作简单、成本低廉的方法,实现与 mESC 的有效神经分化,这里使用了组合筛查策略。如图1所述,胚胎神经生成的整个过程分为两个阶段。第一阶段是指从 mESC 到 NPC 的分化过程,第二阶段涉及从 NPC 到神经元的后续分化。基于操作方便、成本低、材料易用、分化效率高的原则,根据传统的单层培养系统或胚胎体形成系统8、9,选择了第一阶段的7个协议和第二阶段的3个协议。利用细胞形态观察和免疫荧光检测,评估了两个阶段协议的分化效率。通过结合每个阶段最有效的协议,我们建立了神经分化与 mESC 的优化方法。

Protocol

1. 小鼠胚胎干细胞培养 准备 0.1% 明胶涂层细胞培养皿或盘子。 加入2 mL的灭菌0.1%明胶(0.1%w/v在水中)到60毫米细胞培养皿。轻轻摇动,确保细胞培养皿均匀涂层。 将菜肴放入 37 °C 下的 5% CO2 孵化器中,并允许涂层 1 小时。 在播种细胞之前取出0.1%的明胶溶液。注意:去除明胶后,无需干燥或清洗涂层的盘子。 小鼠胚胎干细胞(A2lox和129?…

Representative Results

2 天胚胎体形成 + 6 天 RA 感应最能指导 MESC 分化到 NPC (第一阶段)。为了确定最能促进将 mESC 分化为 NPC(第一阶段)的最佳方案,在 A2lox 和 129 mESC (表 1)上测试了 7 个协议,并使用光显微镜监测了每个组的分化状态。如 图3A所示,在”2天胚胎体形成+6天RA诱导”治疗下,大多数A2lox和129个衍生物(第一阶段协议3)显示堆积良好和中性状形态,这表明NPC的形成。?…

Discussion

在本研究中,我们建立了一种简单而有效的神经元分化方法,具有成本低、材料易用等功能。在这种方法中,2天的胚胎体形成,然后是6天的RA诱导,可以有效地促进mESC在NPC中的分化(第一阶段协议3)。对于二期分化,N2B27介质II(II-协议3)最有效地诱导从NPC分化为神经元。为确保成功,应更多地注意几个关键步骤。

首先,胚胎体的健康状态是整个分化过程的关键。三维胚胎…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家自然科学基金委员会(第31501099号)和中国湖北省教育厅中青年(第31501099号)的支持。Q20191104)。我们感谢武汉科技大学邓文生教授提供小鼠胚胎干细胞系A2lox。

Materials

Anti-Nestin antibody [Rat-401] Abcam Ab11306 stored at -80 °C, avoid repeated freezing and thawing
Anti-β-Tubulin III antibody produced in rabbit Sigma Aldrich T2200 stored at -80 °C, avoid repeated freezing and thawing
Alexa Fluor 488-Labeled Goat Anti-Mouse IgG Beyotime A0428 stored at -20 °C and protect from light
B-27 Supplement (50X), serum free Gibco 17504044 stored at -20 °C, and protect from light
CHIR-99021 (CT99021) Selleck S1263 stored at -20 °C
Coverslips NEST 801007
Cy3-Labeled Goat Anti-Rabbit IgG Beyotime A0516 stored at -20 °C and protect from light
DME/F-12 1:1 (1x) HyClone SH30023.01B stored at 4 °C
Fetal bovine serum HyClone SH30084.03 stored at -20 °C, avoid repeated freezing and thawing
Fluorescence microscopy Olympus CKX53
Gelatin Gibco CM0635B stored at room temperature
GlutaMAX Supplement Gibco 35050061 stored at 4 °C
Immunol Staining Primary Antibody dilution Buffer Beyotime P0103 stored at 4 °C
KnockOut DMEM/F-12 Gibco 12660012 stored at 4 °C
KnockOut Serum Replacement Gibco 10828028 stored at -20 °C, avoid repeated freezing and thawing
Leukemia Inhibitory Factor human Sigma L5283 stored at -20 °C
Mounting Medium With DAPI – Aqueous, Fluoroshield Abcam ab104139 stored at 4 °C and protect from light
MEM Non-essential amino acids solution Gibco 11140076 stored at 4 °C
N-2 Supplement (100X) Gibco 17502048 stored at -20 °C and protect from light
Normal goat serum Jackson 005-000-121 stored at -20 °C
Neurobasal Medium Gibco 21103049 stored at 4 °C
Nonadhesive bacterial dish Corning 3262
Phosphate Buffered Saline (1X) HyClone SH30256.01B stored at 4 °C
Penicillin/ Streptomycin Solution HyClone SV30010 stored at 4 °C
PD0325901(Mirdametinib) Selleck S1036 stored at -20 °C
Retinoic acid Sigma R2625 stored at -80 °C and protect from light
Strain 129 Mouse Embryonic Stem Cells Cyagen MUAES-01001 Maintained in feeder-free culture system
Stem-Cellbanker (DMSO free) ZENOAQ stem cellbanker DMSO free stored at -20 °C, avoid repeated freezing and thawing
Trypsin 0.25% (1X) Solution HyClone SH30042.01 stored at 4 °C
Triton X-100 Sigma T8787
2-Mercaptoethanol Gibco 21985023 stored at 4 °C and protect from light
4% paraformaldehyde Beyotime P0098 stored at -20 °C
6 – well plate Corning 3516
60 mm cell culture dish Corning 430166
15 ml centrifuge tube NUNC 339650

Riferimenti

  1. Vieira, M. S., et al. Neural stem cell differentiation into mature neurons: mechanisms of regulation and biotechnological applications. Biotechnology Advances. 36 (7), 1946-1970 (2018).
  2. Yang, J. R., Lin, Y. T., Liao, C. H. Application of embryonic stem cells on Parkinson’s disease therapy. Genomic Medicine, Biomarkers, and Health Sciences. 3 (1), 17-26 (2011).
  3. Liu, C., Zhong, Y. W., Apostolou, A., Fang, S. Y. Neural differentiation of human embryonic stem cells as an in vitro tool for the study of the expression patterns of the neuronal cytoskeleton during neurogenesis. Biochemical and Biophysical Research Communications. 439 (1), 154-159 (2013).
  4. Khramtsova, E. A., Mezhevikina, L. M., Fesenko, E. E. Proliferation and differentiation of mouse embryonic stem cells modified by the Neural Growth Factor (NGF) gene. Biology Bulletin. 45 (3), 219-225 (2018).
  5. Yoshimatsu, S., et al. Evaluating the efficacy of small molecules for neural differentiation of common marmoset ESCs and iPSCs. Neuroscience research. , (2019).
  6. Kothapalli, C. R., Kamm, R. D. 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials. 34, 5995-6007 (2013).
  7. Gazina, E. V., et al. Method of derivation and differentiation of mouse embryonic stem cells generating synchronous neuronal networks. Journal of Neuroscience Methods. 293, 53-58 (2018).
  8. Ohnuki, Y., Kurosawa, H. Effects of hanging drop culture conditions on embryoid body formation and neuronal cell differentiation using mouse embryonic stem cells: Optimization of culture conditions for the formation of well-controlled embryoid bodies. Journal of Bioscience and Bioengineering. 115 (5), 571-574 (2013).
  9. Wongpaiboonwattana, W., Stavridis, M. P. Neural differentiation of mouse embryonic stem cells in serum-free monolayer culture. Journal of Visualized experiments. (99), e52823 (2015).
  10. Li, Y., et al. An optimized method for neuronal differentiation of embryonic stem cells in vitro. Journal of Neuroscience Methods. 330 (15), 108486 (2020).
  11. Zhou, P., et al. Investigation of the optimal suspension culture time for the osteoblastic differentiation of human induced pluripotent stem cells using the embryoid body method. Biochemical and Biophysical Research Communications. 515 (4), 586-592 (2019).
  12. Lu, J. F., et al. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways. BMC Cell Biology. 10, 57 (2009).
  13. Kanungo, J. Retinoic acid signaling in P19 stem cell differentiation. Anticancer Agents in Medicinal Chemistry. 17 (9), 1184-1198 (2017).
  14. Rochette-Egly, C. Retinoic acid signaling and mouse embryonic stem cell differentiation: Cross talk between genomic and non-genomic effects of RA. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids. 1851 (1), 66-75 (2015).
  15. Wang, R., et al. Retinoic acid maintains self-renewal of murine embryonic stem cells via a feedback mechanism. Differentiation. 76 (9), 931-945 (2008).
  16. Wu, H. B., et al. Retinoic acid-induced upregulation of miR-219 promotes the differentiation of embryonic stem cells into neural cells. Cell Death Disease. 8, 2953 (2017).
  17. Chen, W., et al. Retinoic acid regulates germ cell differentiation in mouse embryonic stem cells through a Smad-dependent pathway. Biochemical and Biophysical Research Communications. 418 (3), 571-577 (2012).
  18. Nakayama, Y., et al. A rapid and efficient method for neuronal induction of the P19 embryonic carcinoma cell line. Journal of Neuroscience Methods. 227, 100-106 (2014).
  19. Bibel, M., et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nature neuroscience. 7 (9), 1003-1009 (2004).
  20. Coyle, D. E., Li, J., Baccei, M. Regional Differentiation of Retinoic Acid-Induced Human Pluripotent Embryonic Carcinoma Stem Cell Neurons. PLoS ONE. 6 (1), 16174 (2011).
  21. Okada, Y., Shimazaki, T., Sobue, G., Okano, H. Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Biologia dello sviluppo. 275, 124-142 (2004).

Play Video

Citazione di questo articolo
Mao, X., Zhao, S. Neuronal Differentiation from Mouse Embryonic Stem Cells In vitro. J. Vis. Exp. (160), e61190, doi:10.3791/61190 (2020).

View Video