Summary

肺环境中免疫细胞和促炎介质的表征

Published: June 24, 2020
doi:

Summary

该协议描述了使用流式细胞术来鉴定短暂性脑中动脉闭塞后肺部环境中免疫细胞组成,细胞因子谱和趋化因子谱的变化,这是缺血性中风的小鼠模型。

Abstract

免疫细胞的扩增、激活和向肺部的运输由多种细胞因子和趋化因子的表达控制,可能因严重的脑损伤而改变。肺炎是缺血性卒中患者死亡的主要原因这一事实证明了这一点。该协议的目的是描述使用多色流式细胞术分析来鉴定小鼠肺部的13种类型的免疫细胞,包括肺泡巨噬细胞,间质巨噬细胞,CD103 +或CD11b +树突状细胞(DC),浆细胞样DC,嗜酸性粒细胞,单核细胞/单核细胞衍生细胞,嗜中性粒细胞,淋巴样来源的T和B细胞,NK细胞和NKT细胞,通过短暂的脑中动脉阻塞诱导缺血性中风。此外,我们使用磁珠匀浆方法描述了肺匀浆的制备,通过多重磁珠阵列结合流式细胞术分析同时确定13种不同细胞因子或趋化因子的表达水平。该方案也可用于研究其他疾病环境中的肺免疫反应,例如传染性肺病或过敏性疾病。

Introduction

肺是一个屏障器官,暴露于外部环境,因此不断接受免疫学挑战,如病原体和过敏原1。肺常驻免疫细胞的活化和免疫细胞从外围浸润是清除肺部环境中病原体所必需的。此外,肺常驻免疫细胞保持对共生细菌的耐受性,这表明这些细胞在病原体清除和维持体内平衡1中起作用。肺泡和间质巨噬细胞是肺常驻前哨免疫细胞之一,它们通过模式识别受体感知病原体,并通过吞噬作用2清除这些病原体。肺常驻树突状细胞通过抗原呈递弥合先天性和适应性免疫反应3.此外,激活的局部先天免疫细胞产生细胞因子和趋化因子,这些细胞因子和趋化因子可放大炎症反应并刺激单核细胞、嗜中性粒细胞和淋巴细胞等免疫细胞浸润到肺部1。缺血性卒中已被证明会改变全身免疫力,并导致肺部感染易感性增加。然而,很少有研究评估缺血性卒中后的肺间室,尽管一些研究在炎症条件下检查了它456789本文描述的方法的目标是同时确定肺病理学、免疫细胞组成以及肺部细胞因子和趋化因子表达水平,以评估肺间室的改变,并评估缺血发作后肺部免疫反应的潜在改变。

这里描述的是用于从小鼠肺部获得单细胞悬浮液以鉴定13种类型的免疫细胞的方案。该方案基于胶原酶D的组织消化,而无需自动组织解离器。此外,我们开发了一种制备组织匀浆的方案,可用于使用基于流式细胞术的多重磁珠阵列确定13种不同细胞因子或趋化因子的表达水平。该方案已成功用于研究缺血性卒中对肺免疫的影响,也可用于其他疾病模型。

Protocol

所有执行的协议和程序都得到了西弗吉尼亚大学机构动物护理和使用委员会(IACUC)的批准。小鼠被安置在西弗吉尼亚大学动物馆的无病原体条件下。 1. 溶液的制备 制备灌注缓冲液(磷酸盐缓冲盐水,PBS)。每只小鼠使用大约两个 10 mL 等分试样的冰冷 PBS。 准备肺细胞培养基/流式细胞系统缓冲液。FACS缓冲液含有补充1%胎牛血清(FBS)的PBS。在肺切除和转移的?…

Representative Results

我们最近报道,小鼠缺血性中风诱导改变了肺11的免疫细胞组成。具体而言,短暂性脑缺血增加了肺泡巨噬细胞、嗜中性粒细胞和 CD11b+ DC 的百分比,同时减少了肺区室中 CD4+ T 细胞、CD8+ T 细胞、B 细胞、NK 细胞和嗜酸性粒细胞的百分比。此外,细胞改变对应于肺部多种趋化因子水平的显着降低。这里描述的是一种分离和鉴定肺间室中不同免疫细胞群的方法。这里显示的代表性结?…

Discussion

这里描述的方案允许在同一只小鼠中鉴定肺免疫细胞类型和趋化因子或细胞因子的表达。如果需要组织病理学研究,可以在进行单细胞分离步骤之前移除并固定单个叶。这种方法的一个局限性是,如果免疫细胞组成的变化以及趋化因子和/或细胞因子的表达预计在肺的不同叶之间分布不均,则这种方法可能不适用于某些疾病环境。例如,一些细菌,如 结核分枝杆菌, 显示出感染肺的某些叶<…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH拨款P20 GM109098和从普拉斯佩罗到埃德温·万的创新奖计划的支持。流式细胞术实验在WVU流式细胞术和单细胞核心设施中进行,该设施得到了NIH授予S10 OD016165,U57 GM104942,P30 GM103488和P20 GM103434的支持。

Materials

B220-APC, clone RA3-6B2 Biolegend 103212 1:200 dilution
Beadbug 3 position bead homogenizer Benchmark Scientific D1030 Tissue homogenizer
CCR2-BV421, clone SA203G11 Biolegend 150605 1:200 dilution
CD103-BV421, clone 2E7 Biolegend 121422 1:200 dilution
CD11b-PE/Cy7, clone M1/70 Biolegend 101216 1:400 dilution
CD11c-PE/Cy7, clone N418 Biolegend 117318 1:200 dilution
CD11c-Percp/Cy5.5, clone N418 Biolegend 117328 1:200 dilution
CD4-BV421, clone GK1.5 Biolegend 100443 1:200 dilution
CD45-FITC, clone 30-F11 Biolegend 103108 1:200 dilution
CD64-APC, clone X54-5/7.1 Biolegend 139306 1:200 dilution
CD8-PE, clone 53-6.7 Biolegend 100708 1:800 dilution
Collagenase D Sigma Aldrich 11088882001 Component in the dissociation buffer
Conical screw cap tube ThermoFisher 02-681-344 Tube for tissue homogenization
DNase I Sigma Aldrich 10104159001 Component in the dissociation buffer
Fc block CD16/32 antibody Biolegend 101320 1:100 dilution
genlteMACS dissociator Miltenyi Biotec 130-093-235 Comparsion of lung digestion with or without mechanical dissociator
gentleMACS C tubes Miltenyi Biotec 130-093-237 Tube for tissue disscoiation with genlteMACS dissociator
Halt protease and phosphatase inhibitor cocktial ThermoFisher 78442 Component in the homogenization buffer
Laser doppler monitor Moor MOORVMS-LDF Blood flow monitoring during tMCAO
LEGENDplex proinflammatory chemokine panel Biolegend 740451 Multiplex bead array
LIVE/DEAD fixable near-IR stain ThermoFisher L34976 Use for dead cell exclusion during flow cytometric analysis
Ly6C-PE, clone HK1.4 Biolegend 128008 1:800 dilution
Ly6G-BV510, clone 1A8 Biolegend 127633 1:200 dilution
MCAO suture L56 reusable 6-0 medium Doccol 602356PK10Re tMCAO
MHC II-BV510, clone M5/114.15.2 Biolegend 107636 1:800 dilution
NK1.1-Percp/Cy5.5, clone PK136 Biolegend 108728 1:200 dilution
Siglec F-PE, clone E50-2440 BD Biosciences 552126 1:200 dilution
Silk suture thread, size 6/0 Fine Science Tools 18020-60 tMCAO
SomnoSuite anesthesia system Kent Scientific SS-01 Mouse anaesthetization for tMCAO
TCRb-BV510, clone H57-897 Biolegend 109234 1:200 dilution
Zirconia/silica beads, 2.3 mm Biospec 11079125z Beads for tissue homogenization

Riferimenti

  1. Lloyd, C. M., Marsland, B. J. Lung Homeostasis: Influence of Age, Microbes, and the Immune System. Immunity. 46 (4), 549-561 (2017).
  2. Allard, B., Panariti, A., Martin, J. G. Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Frontiers in Immunology. 9, 1777 (2018).
  3. Hartl, D., et al. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. Journal of Innate Immunity. 10 (5-6), 487-501 (2018).
  4. Prass, K., et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. Journal of Experimental Medicine. 198 (5), 725-736 (2003).
  5. Smith, C. J., et al. Interleukin-1 receptor antagonist reverses stroke-associated peripheral immune suppression. Cytokine. 58 (3), 384-389 (2012).
  6. McCulloch, L., Smith, C. J., McColl, B. W. Adrenergic-mediated loss of splenic marginal zone B cells contributes to infection susceptibility after stroke. Nature Communications. 8 (1), 15051 (2017).
  7. Dames, C., et al. Immunomodulatory treatment with systemic GM-CSF augments pulmonary immune responses and improves neurological outcome after experimental stroke. Journal of Neuroimmunology. 321, 144-149 (2018).
  8. Jin, R., Liu, S., Wang, M., Zhong, W., Li, G. Inhibition of CD147 Attenuates Stroke-Associated Pneumonia Through Modulating Lung Immune Response in Mice. Frontiers in Neurology. 10, 853 (2019).
  9. Yu, Y. R., et al. A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid Tissues. PLoS One. 11 (3), 0150606 (2016).
  10. Rousselet, E., Kriz, J., Seidah, N. G. Mouse model of intraluminal MCAO: cerebral infarct evaluation by cresyl violet staining. Journal of Visualized Experiments. (69), e4038 (2012).
  11. Farris, B. Y., et al. Ischemic stroke alters immune cell niche and chemokine profile in mice independent of spontaneous bacterial infection. Immunity, Inflammation and Diseases. 7 (4), 326-341 (2019).
  12. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  13. Lehmann, J. S., Zhao, A., Sun, B., Jiang, W., Ji, S. Multiplex Cytokine Profiling of Stimulated Mouse Splenocytes Using a Cytometric Bead-based Immunoassay Platform. Journal of Visualized Experiments. (129), e56440 (2017).
  14. Shi, C., Pamer, E. G. Monocyte recruitment during infection and inflammation. Nature Reviews Immunology. 11 (11), 762-774 (2011).
  15. Monaghan, K. L., Zheng, W., Hu, G., Wan, E. C. K. Monocytes and Monocyte-Derived Antigen-Presenting Cells Have Distinct Gene Signatures in Experimental Model of Multiple Sclerosis. Frontiers in Immunology. 10, 2779 (2019).
  16. Zhai, X., et al. A novel technique to prepare a single cell suspension of isolated quiescent human hepatic stellate cells. Science Reports. 9 (1), 12757 (2019).
  17. Platzer, B., et al. Dendritic cell-bound IgE functions to restrain allergic inflammation at mucosal sites. Mucosal Immunology. 8 (3), 516-532 (2015).
  18. Shinoda, K., et al. Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. Proceedings of the National Academy of Sciences U. S. A. 113 (20), 2842-2851 (2016).
  19. Nakahashi-Oda, C., et al. Apoptotic epithelial cells control the abundance of Treg cells at barrier surfaces. Nature Immunology. 17 (4), 441-450 (2016).
  20. Barrott, J. J., et al. Modeling synovial sarcoma metastasis in the mouse: PI3′-lipid signaling and inflammation. Journal of Experimental Medicine. 213 (13), 2989-3005 (2016).
  21. Bouté, M., et al. The C3HeB/FeJ mouse model recapitulates the hallmark of bovine tuberculosis lung lesions following Mycobacterium bovis aerogenous infection. Veterinary Research. 48 (1), 73 (2017).
  22. Bal, S. M., et al. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nature Immunology. 17 (6), 636-645 (2016).
  23. Nakasone, C., et al. Accumulation of gamma/delta T cells in the lungs and their roles in neutrophil-mediated host defense against pneumococcal infection. Microbes Infection. 9 (3), 251-258 (2007).

Play Video

Citazione di questo articolo
Monaghan, K. L., Farris, B. Y., Zheng, W., Wan, E. C. K. Characterization of Immune Cells and Proinflammatory Mediators in the Pulmonary Environment. J. Vis. Exp. (160), e61359, doi:10.3791/61359 (2020).

View Video