Summary

评估慢性脚踝不稳个体的姿势控制与下肢肌肉活化

Published: September 18, 2020
doi:

Summary

患有慢性脚踝不稳症 (CAI) 的个人表现出姿势控制缺陷和下肢肌肉活动延迟。计算机化的动态后排图与表面肌电图相结合,提供视觉、躯体感觉和前庭系统与肌肉激活调节的配合,以保持与CAI个体的姿势稳定性。

Abstract

计算机化动态后排术(CDP)是一种客观的技术,用于评价静态和动态条件下的姿势稳定性和扰动性。CDP 基于倒摆模型,该模型跟踪压力中心和重心之间的相互关系。CDP可用于分析视觉、自体感和前庭感觉的比例,以保持姿势稳定性。以下角色定义慢性脚踝不稳定 (CAI):持续的脚踝疼痛、肿胀、”让路”的感觉和自我报告的残疾。由于侧脚踝韧带复杂损伤,CAI个体的姿势稳定性和纤维肌肉活化水平降低。很少有研究使用CDP来探索与CAI的个人的姿势稳定性。缺乏研究,研究通过使用同步的CDP与表面肌电图调查姿势稳定性和相关肌肉活化。此 CDP 协议包括感官组织测试 (SOT)、电机控制测试 (MCT) 和适应测试 (ADT),以及测量单边姿态 (US) 和稳定性限制 (LOS) 的测试。表面肌电图系统与CDP同步,在测量过程中收集下肢肌肉激活的数据。该协议提出了一种评估视觉、躯体感觉、前庭系统及相关肌肉活化的协调以及维持姿势稳定性的新方法。此外,它提供了新的见解,在应对真正的复杂环境时,与CAI的个人的神经肌肉控制。

Introduction

计算机化动态后排术(CDP)是一种客观的技术,用于评价静态和动态条件下的姿势稳定性和扰动性。CDP 基于倒摆模型,该倒摆模型跟踪压力中心 (COP) 和重心 (COG) 之间的相互关系。COG 是质量中心 (COM) 的垂直投影,而 COM 是全局参考系统中整体质量的点等效。COP 是垂直地面反应力向量的点位置。它表示与地面接触区域表面所有压力的加权平均值。姿势稳定性是能够在给定的感官环境中将 COM 保持为支持的基础。它反映了神经肌肉控制能力,协调中枢神经系统与远角感觉系统(视觉,自体感觉,和前庭感觉)和运动命令输出2

以往的姿势控制评估方法,如单腿姿势的时间和Y平衡测试的伸手距离,都是以结果为导向的,不能用于客观评估感觉系统和运动控制3之间的协调。此外,一些研究使用便携式计算机摆动板,量化动态平衡性能的实验室设置4,4,5,6。,6CDP不同于上述测试方法,因为它可应用于姿势稳定性维持中视觉、自体感和前庭感觉比例的分析,以及运动策略(如脚踝或臀部显性策略)比例的评估。由于其准确性、可靠性和有效性,它一直被视为姿势控制测量7的黄金标准。

慢性脚踝不稳(CAI)的特点是持续的脚踝疼痛,肿胀,感觉”让位”;这是最常见的运动损伤之一。CAI主要源于侧脚踝扭伤,这破坏了侧脚踝韧带复合体的完整性和稳定性。自体性、纤维肌肉力量和塔卢斯的正常轨迹受损10,11。10,弱脚踝段的缺陷可能导致姿势控制和肌肉激活在个人与CAI12的不足。然而,很少有研究已经调查了个人与CAI的姿势稳定性使用CDP3,13。3,目前的测量很少能从感官分析的角度分析CAI的姿势控制缺陷。因此,CAI的感官组织和姿势策略保持姿势稳定性的能力需要进一步探索。

肌肉活动是神经肌肉控制的重要组成部分,影响姿势稳定性的调节14,15。14,15然而,CDP只通过力板监测COP和COG之间的相互关系,它很难用于观察有CAI个体的下肢肌肉的特定激活水平。目前,很少有研究通过CDP与肌电图(EMG)相结合的方法评估了CCAI个体的姿势稳定性。

因此,开发的协议旨在通过结合CDP和表面肌电图系统(sEMG)来探索姿势控制和相关肌肉活动。该协议为 CAI 的参与者提供了一种研究神经肌肉控制的新方法,包括感官组织、姿势控制和相关肌肉活动。

Protocol

在测试之前,参与者在收到有关实验过程的信息后签署了知情同意书。这项实验已获上海体育大学伦理委员会批准。 1. 设备设置 打开 CDP 系统,完成自校准,并确保仪器在 100 Hz 采样频率下正常运行。注:两个安装的独立力板每个测量三个力(Fx、Fy 和 Fz)和三个力(Mx、My 和 Mz)。x 轴位于左-右方向,垂直于下垂平面。y 轴位于向前和向后方向,垂直于日冕平面。z 轴垂直于水平?…

Representative Results

代表性 CDP 结果感官组织测试当环境随着外围信号输入而变化时,系统评估参与者在预定目标区域中保持COG的能力。均衡分数 (ES)是条件 1+6 下的分数,它反映了协调感觉系统以维持姿势稳定性的能力(公式 6)。复合分数 (COMP)是所有条件的加权平均分数。重点强调 4、5 和 6 的具有挑战性的条件。综合分数的计算方法是独立平均条件 SO…

Discussion

该协议用于测量动态姿势控制和相关肌肉活动的个人与CAI通过同步CDP与sEMG。CDP跟踪COP和COG的轨迹,并提供对感官信息(视觉、躯体感觉和前庭感觉)输入与外部环境8,21,22之间的相互作用的洞察8,。它是诊断由感觉或运动系统紊乱引起的功能活动限制的有效工具。在CDP任务期间同步收集肌肉活动,以调查下肢协调。该协议弥?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者确认中国国家自然科学基金(11572202、11772201和31700815)的资助。

Materials

NeuroCom Balance Manager SMART EquiTest Natus Medical Incorporated, USA Its major components include: NeuroCom Balance Manager Software Suite, dynamic dual force plate (rotate & translate), moveable visual surround with 15” LCD display (it could provide a real time display of the subject’s center of gravity shown as a cursor during the task) and illumination, overhead support bar with patient harness, computer and other parts.
wireless Myon 320 sEMG system Myon AG The system consists of 16 parallel channels of transmitter signals, receiver, "EMG motion Tools" and "ProEMG" software,computer and other parts.

Riferimenti

  1. Winter, D. A. Human balance and posture control during standing and walking. Gait & Posture. 3, 193-214 (1995).
  2. Vanicek, N., King, S. A., Gohil, R., Chetter, I. C., Coughlin, P. A. Computerized dynamic posturography for postural control assessment in patients with intermittent claudication. Journal of Visualized Experiments. (82), e51077 (2013).
  3. Yin, L., Wang, L. Acute Effect of Kinesiology Taping on Postural Stability in Individuals With Unilateral Chronic Ankle Instability. Frontiers in Physiology. 11, 192 (2020).
  4. Fusco, A., et al. Dynamic Balance Evaluation: Reliability and Validity of a Computerized Wobble Board. Journal of Strength and Conditioning Research. 34 (6), 1709-1715 (2020).
  5. Fusco, A., et al. Wobble board balance assessment in subjects with chronic ankle instability. Gait & Posture. 68, 352-356 (2019).
  6. Silva Pde, B., Oliveira, A. S., Mrachacz-Kersting, N., Laessoe, U., Kersting, U. G. Strategies for equilibrium maintenance during single leg standing on a wobble board. Gait & Posture. 44, 149-154 (2016).
  7. Domènech-Vadillo, E., et al. Normative data for static balance testing in healthy individuals using open source computerized posturography. European Archives of Oto-Rhino-Laryngology. 276 (1), 41-48 (2019).
  8. Harro, C. C., Garascia, C. Reliability and validity of computerized force platform measures of balance function in healthy older adults. Journal of Geriatric Physical Therapy. 42 (3), 57-66 (2019).
  9. Doherty, C., et al. The incidence and prevalence of ankle sprain injury: a systematic review and meta-analysis of prospective epidemiological studies. Sports Medicine. 44 (1), 123-140 (2014).
  10. Hertel, J. Sensorimotor deficits with ankle sprains and chronic ankle instability. Clinics in Sports Medicine. 27 (3), 353-370 (2008).
  11. Munn, J., Sullivan, S. J., Schneiders, A. G. Evidence of sensorimotor deficits in functional ankle instability: a systematic review with meta-analysis. Journal of Science and Medicine in Sport. 13 (1), 2-12 (2010).
  12. Arnold, B. L., De La Motte, S., Linens, S., Ross, S. E. Ankle instability is associated with balance impairments: a meta-analysis. Medicine & Science in Sports & Exercise. 41 (5), 1048-1062 (2009).
  13. de-la-Torre-Domingo, C., Alguacil-Diego, I. M., Molina-Rueda, F., Lopez-Roman, A., Fernandez-Carnero, J. Effect of kinesiology tape on measurements of balance in subjects with chronic ankle instability: a randomized controlled trial. Archives of Physical Medicine and Rehabilitation. 96 (12), 2169-2175 (2015).
  14. Jaber, H., et al. Neuromuscular control of ankle and hip during performance of the star excursion balance test in subjects with and without chronic ankle instability. PLoS One. 13 (8), 0201479 (2018).
  15. Simpson, J. D., Stewart, E. M., Macias, D. M., Chander, H., Knight, A. C. Individuals with chronic ankle instability exhibit dynamic postural stability deficits and altered unilateral landing biomechanics: A systematic review. Phys Ther Sport. 37, 210-219 (2019).
  16. Gribble, P. A., et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. Br J Sports Medicine. 48 (13), 1014-1018 (2014).
  17. Wrisley, D. M., et al. Learning effects of repetitive administrations of the sensory organization test in healthy young adults. Archives of Physical Medicine and Rehabilitation. 88 (8), 1049-1054 (2007).
  18. Tabard-Fougère, A., et al. EMG normalization method based on grade 3 of manual muscle testing: Within- and between-day reliability of normalization tasks and application to gait analysis. Gait & Posture. 60, 6-12 (2018).
  19. Shim, D. B., Song, M. H., Park, H. J. Typical sensory organization test findings and clinical implication in acute vestibular neuritis. Auris Nasus Larynx. 45 (5), 916-921 (2018).
  20. Nam, G. S., Jung, C. M., Kim, J. H., Son, E. J. Relationship of vertigo and postural instability in patients with vestibular schwannoma. Clinical and Experimental Otorhinolaryngology. 11 (2), 102-108 (2018).
  21. Faraldo-Garcia, A., Santos-Perez, S., Crujeiras, R., Soto-Varela, A. Postural changes associated with ageing on the sensory organization test and the limits of stability in healthy subjects. Auris Nasus Larynx. 43 (2), 149-154 (2016).
  22. Gofrit, S. G., et al. The association between video-nystagmography and sensory organization test of computerized dynamic posturography in patients with vestibular symptoms. European Archives of Oto-Rhino-Laryngology. 276 (12), 3513-3517 (2019).
  23. Gribble, P. A., Hertel, J., Denegar, C. R., Buckley, W. E. The effects of fatigue and chronic ankle instability on dynamic postural control. Journal of Athletic Training. 39 (4), 321-329 (2004).
  24. Gribble, P. A., Hertel, J., Denegar, C. R. Chronic ankle instability and fatigue create proximal joint alterations during performance of the Star Excursion Balance Test. International Journal of Sports Medicine. 28 (3), 236-242 (2007).
  25. Le Clair, K., Riach, C. Postural stability measures: what to measure and for how long. Clinical Biomechanics. 11 (3), 176-178 (1996).
  26. Fusco, A., et al. Y balance test: Are we doing it right. Journal of Science and Medicine in Sport. 23 (2), 194-199 (2020).
  27. Riemann, B., Davies, G. Limb, sex, and anthropometric factors influencing normative data for the Biodex Balance System SD athlete single leg stability test. Athletic Training & Sports Health Care. 5, 224-232 (2013).
  28. Chiari, L., Rocchi, L., Cappello, A. Stabilometric parameters are affected by anthropometry and foot placement. Clinical Biomechanics. 17 (9-10), 666-677 (2002).
  29. Chaudhry, H., Bukiet, B., Ji, Z., Findley, T. Measurement of balance in computer posturography: Comparison of methods–A brief review. Journal of Bodywork and Movement Therapies. 15 (1), 82-91 (2011).
  30. Hertel, J., Braham, R. A., Hale, S. A., Olmsted-Kramer, L. C. Simplifying the Star Excursion Balance Test Analyses of Subjects With and Without Chronic Ankle Instability. Journal of Orthopaedic & Sports Physical Therapy. 36 (3), (2006).
  31. Gribble, P. A., Hertel, J., Plisky, P. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. Journal of Athletic Training. 47 (3), 339-357 (2012).
check_url/it/61592?article_type=t

Play Video

Citazione di questo articolo
Yin, L., Lai, Z., Hu, X., Liu, K., Wang, L. Evaluating Postural Control and Lower-extremity Muscle Activation in Individuals with Chronic Ankle Instability. J. Vis. Exp. (163), e61592, doi:10.3791/61592 (2020).

View Video